Answer:
Mass = 114.26 g
Explanation:
Given data:
Number of gold atoms = 3.47×10²³ atoms
Mass in gram = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
3.47×10²³ atoms × 1 mol /6.022 × 10²³ atoms
0.58 mol
Mass of gold:
Mass = number of moles × molar mass
Mass = 0.58 mol × 197 g/mol
Mass = 114.26 g
Answer:
The covalent bond in Cl₂ is break and combine with sodium to form NaCl through ionic bond.
Explanation:
Chemical equation:
Na + Cl₂ → NaCl
Balanced chemical equation:
2Na + Cl₂ → 2NaCl
The given reaction indicate the formation of sodium chloride.
Sodium chloride is an ionic compound. It is formed by the reaction of chlorine and sodium. The type of bond in Cl₂ is covalent. Both chlorine atoms are tightly held together through sharing of electrons. When sodium chloride is formed the covalent between the chlorine atoms are break and it react with sodium . The chlorine toms thus gain the one electron from the sodium atom and became negative ion while sodium by losing its one valance electrons became positive ions. The strong electrostatic forces are develop between them and ionic bond is formed.
Answer:
if the force applied increases
if the area of contact increases
Explanation:
Fungi cannot make their food from sunlight, water and carbon dioxide as plants do, in the process known as photosynthesis
Data:
Molar Mass of HNO2
H = 1*1 = 1 amu
N = 1*14 = 14 amu
O = 3*16 = 48 amu
------------------------
Molar Mass of HNO2 = 1 + 14 + 48 = 63 g/mol
M (molarity) = 0.010 M (Mol/L)
Now, since the Molarity and ionization constant has been supplied, we will find the degree of ionization, let us see:
M (molarity) = 0.010 M (Mol/L)
Use: Ka (ionization constant) =









Now, we will calculate the amount of Hydronium [H3O+] in nitrous acid (HNO2), multiply the acid molarity by the degree of ionization, we will have:
![[ H_{3} O^+] = M* \alpha](https://tex.z-dn.net/?f=%5B%20H_%7B3%7D%20O%5E%2B%5D%20%3D%20M%2A%20%5Calpha%20)
![[ H_{3} O^+] = 0.010* 2.23*10^{-3}](https://tex.z-dn.net/?f=%5B%20H_%7B3%7D%20O%5E%2B%5D%20%3D%200.010%2A%202.23%2A10%5E%7B-3%7D)
![[ H_{3} O^+] \approx 0.0223*10^{-3}](https://tex.z-dn.net/?f=%5B%20H_%7B3%7D%20O%5E%2B%5D%20%5Capprox%200.0223%2A10%5E%7B-3%7D)
![[ H_{3} O^+] \approx 2.23*10^{-5} \:mol/L](https://tex.z-dn.net/?f=%5B%20H_%7B3%7D%20O%5E%2B%5D%20%5Capprox%202.23%2A10%5E%7B-5%7D%20%5C%3Amol%2FL)
And finally, we will use the data found and put in the logarithmic equation of the PH, thus:
Data:
log10(2.23) ≈ 0.34
pH = ?
![[ H_{3} O^+] = 2.23*10^{-5}](https://tex.z-dn.net/?f=%5B%20H_%7B3%7D%20O%5E%2B%5D%20%3D%202.23%2A10%5E%7B-5%7D)
Formula:
![pH = - log[H_{3} O^+]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%5BH_%7B3%7D%20O%5E%2B%5D)
Solving:
![pH = - log[H_{3} O^+]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%5BH_%7B3%7D%20O%5E%2B%5D)




Note:. The pH <7, then we have an acidic solution.