Answer:
Only
gives spontaneous reaction.
Explanation:
A redox reaction will be spontaneous if standard reduction potential (
) of the reaction is positive. Because it leads to negative standard gibbs free energy change (
), which is a thermodynamic condition for spontaneity of a reaction.

Where
and
represents standard reduction potential of reduction half cell and standard reduction potential of oxidation half cell.
(1) Oxidation:
; 
Reduction:
; 
So, 
Hence this pair will give spontaneous reaction.
(2) Similarly as above, 
Hence this pair will give non-spontaneous reaction.
(3) Similarly as above, 
Hence this pair will give non-spontaneous reaction.
(4) Similarly as above, 
Hence this pair will give non-spontaneous reaction.
Asphalt is a biproduct of making gasoline, diesel, kerosene, jet fuel, all from crude oil pumped from the ground. Asphalt is the garbage or waste that comes out the bottom of the process of distilling those products. They heat the thick oily-sooty gunky asphalt and mix it with rock or sand and make roads out of it. So the compound would be the long hydrocarbon chains.
<span>When water decomposes into oxygen and hydrogen, the mass "Remains Constant" as according to Law of Conservation of mass, mass can neither be created not destroyed,.
In short, Your Answer would be Option A
Hope this helps!</span>
Answer:
Inspiration
Explanation:
This question is on application of Boyle's law; <u>pressure is inversely proportional to volume</u>.when we inhale air, the diaphragm and the muscles in the ribs contract thus increasing the volume in the lungs.Increased volume of the lungs cause the pressure to decrease.During exhaling, the diaphragm and muscles in the ribs relax, making the lungs to recoil and reduce in volume to force air out.Pressure in the lungs is increased than that in the environment making air to move out.
Answer:
Q = 114349.5 J
Explanation:
Hello there!
In this case, since this a problem in which we need to calculate the total heat of the described process, it turns out convenient to calculate it in three steps; the first one, associated to the heating of the liquid water from 40 °C to 100 °C, next the vaporization of liquid water to steam at constant 100 °C and finally the heating of steam from 100 °C to 115 °C. In such a way, we calculate each heat as shown below:

Thus, the total energy turns out to be:

Best regards!