Answer:
25.8
Explanation:
Let's write the reaction between magnesium-phosphide and potassium:
Mg3P2 + K = Mg + K3P
And now let's balance this equation:
Mg3P2+6K=3Mg+2K3P
We see that the ratio of magnesium-phosphide and potassium is 1:6, which means that for every mole of magnesium-phosphide there need to be 6 moles of potassium.
Since we have 4.3 moles of Mg3P2, there need to be 6 • 4.3 = 25.8 moles of potassium.
Pressure has little effect on the solubility of liquids and solids because they are almost incompressible True.
Liquids and solids show little change in solubility with changes in pressure. As expected, gases increase in solubility with increasing pressure. Henry's Law states that the solubility of a gas in a liquid is directly proportional to the pressure of that gas above the surface of the solution.
External pressure has little effect on liquid and solid solubility. In contrast, the solubility of a gas increases as the partial pressure of the gas above the solution increases.
Solubility is a measure of the concentration of dissolved gas particles in a liquid and is a function of gas pressure. Increasing the gas pressure increases the number of collisions and increases the solubility, and decreasing the pressure decreases the solubility.
Learn more about pressure here : brainly.com/question/28012687
#SPJ4
The idea is that all continents move at a rate of approximately 2 inches per year because their moving ever since pangea (all continents were one) separated
I think that the answer is a size and speed
Answer:
I2; I–I bond length = 266 pm
Explanation:
Bond length is inversely related to bond strength. The longer the bond length, the weaker the bond. The shorter the bond length the stronger the bond. A large bond distance implies that there is poor interaction between the atoms involved in the bond. A long bond distance or bond length may even indicate the absence of covalent interaction between the atoms involved.