corrected question:The heavyweight boxing champion of the world punches a sheet of paper in midair, bringing it from rest up to a speed of 26.5 m/s in 0.044 s . The mass of the paper is 0.003 kg. Part A Find the force of the punch on the paper
Answer:
Force=1.8N
Explanation:
Newtons third law states that in every action there is equal and opposite reaction.
The force of the punch will be the force that moves the paper by a speed of 26.5m/s.


m=0.003kg , v=26.5m/s u=0(the paper is punched from rest) t=0.044s

F=1.8N
The force that acts on all objects, all the time on Earth is gravitational force.
The force that surface exert on an object perpendicularly is normal reaction.
<h3>What force acts on all objects, all the time on Earth?</h3>
- Force due to gravity is gravitational pull on objects due to its position on earth's surface.
The force due to gravity on object's is calculated by applying Newton's second law of motion as follows;
F = mg
where;
- m is the mass of the object
- g is acceleration due to gravity
The force that surface exert on an object perpendicularly is normal reaction.
Thus, the force that acts on all objects, all the time on Earth is gravitational force.
Learn more about force of gravity here: brainly.com/question/2537310
Answers:
1. B. Circuit
2. D. Electrons moving around
3. B. Series and parallel
4. C. Parallel
5. C. Series
6. A. One
7. C. If one goes down, they both go down.
Hope this helped!
Answer:
a) E = 4.5*10⁴ V/m
b) C= 17.7 nF
c) Q = 159. 3 nC
Explanation:
a)
- By definition, the electric field is the electrostatic force per unit charge, and since the potential difference between plates is just the work done by the field, divided by the charge, assuming a uniform electric field, if V is the potential difference between plates, and d is the separation between plates, the electric field can be expressed as follows:

b)
- For a parallel-plate capacitor, applying the definition of capacitance as the quotient between the charge on one of the plates and the potential difference between them, and assuming a uniform surface charge density σ, we get:

From (1), we know that V = E*d, but at the same time, applying Gauss'
Law at a closed surface half within the plate, half outside it , it can be
showed than E= σ/ε₀, so finally we get:

c)
- From (3) we can solve for Q as follows:

Answer:
The water filled balloon does not burst because the rubber obviously does not reach a temperature sufficient for it to melt or burn. The rubber is stretched thin so that heat is quickly transferred into the balloon. With air inside the balloon, this heat is not readily dissipated away from the spot touching the flame.