Kinetic energy is energy in motion and potential energy is stored energy
h =(3.7 - .58)m = 3.12m
Now put PE into KE and we have to use the formula:
√2gh (g = gravity and h = height) therefor:
√2 x 9.8 x 3.12
= 7.82m/s
I hope this helps!
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as

Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,

where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that



Replacing the previous equation with our values we have,




The tangential velocity then would be,



Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

Replacing with our values and re-arrange to find 



That is equal in revolution to

The linear displacement of the system is,



Answer:
Explanation:
Given
Weight of roller coaster is 
mass of roller coaster 
Distance traveled by roller coaster 
drag force 
velocity at top 
Suppose E is the initial energy
Conserving Energy at bottom and top


