<h3><u>Answer;</u></h3>
40 light bulbs
<h3><u>Explanation</u>;</h3>
The total resistance of components or bulbs in series is given as the sum of resistance of all the components.
Thus; if there are bulbs in series each with a resistance of 1.5 Ω, the the total resistance will be; 1.5nΩ
From the ohms law;
V = IR , where V is the voltage, I is the current and R is the resistor.
Thus; R = V/i
R = 120/2
= 60 Ω
But, there are n bulbs each with 1.5 Ω; thus there are;
n = 60/1.5
<u> = 40 Bulbs </u>
Answer:
A vector quantity is a quantity that has both magnitude and direction.
Explanation:
When one object is rubbed against another, static electricity can be created. This is because the rubbing creates a negative charge that is carried by electrons.
The movement of the planets and other celestial bodies in the solar system is actually caused by the sun's gravitational pull or force.
Just like the moon orbits the earth because of the gravitational pull by the earth so does gravitational pull by the sun causes planets' and other celestial bodies' orbit.
Given Information:
Power of bulb = w = 25 W
atts
distance = d = 9.5 cm = 0.095 m
Required Information:
Radiation Pressure = ?
Answer:
Radiation Pressure =7.34x10⁻⁷ N/m²
Explanation:
We know that radiation pressure is given by
P = I/c
Where I is the intensity of radiation and is given by
I = w/4πd²
Where w is the power of the bulb in watts and d is the distance from the center of the bulb.
So the radiation pressure becomes
P = w/c4πd²
Where c = 3x10⁸ m/s is the speed of light
P = 25/(3x10⁸*4*π*0.095²)
P = 7.34x10⁻⁷ N/m²
Therefore, the radiation pressure due to a 25 W bulb at a distance of 9.5 cm from the center of the bulb is 7.34x10⁻⁷ N/m²