<span>Números racionales son números que pueden ser wriiten como una proporción, y pueden ser escritos como una fracción también. Un ejemplo de un número racional sería dos cuartos (2/4), medio (1/2), etc.</span>
Answer: total books = 180
Step-by-step explanation:
Given: Poetry section of the library has 6 bookcases.
Number of shelves in each bookcase = 3
Total shelves = (Number of shelves in each bookcase) x (Number of bookcases in each poetry section)
= 3 x 6
= 18
Number of books in each shelf = 10
Total books = (number of shelves) x 10
= 18 x 10
= 180
hence, total books in the poetry section= 180
Bea will have $540 more than Alassandro after 12 months
Reminder: the formula for a geom. seq. is
a(n) = a(1)*r^(n-1), where a(1) is the first term, n is the counter and r is the common ratio.
I first noted that 243 is a power of 3; specifically, 243=3^5, or 243=3(3)^4, or 243=(3^2)(3)^(4-1). Notice that I'm trying here to rewrite 243=3^5 in the form a(n) = a(1)*r^(n-1): a(4) = a(1)(3)^(4-1), or a(4) = a(1)(3)^3 = 243. Then by division we find that a(1) = 243/27 = 9. Is it possible that a(1)=9?
Let's try out our formula a(n)=9(3)^(n-1). Steal n=9 and see whether this formula gives u s 59049:
n(9) = 59049 = 9(3)^(9-1), or 9(3)^8. True or false? 3^8= 6561, and 9(3)^8 = 59049.
YES! That's correct.
Therefore, the desired formula is
a(n) = 9(3)^(n-1). The first term, a(1) is 9(3)^(1-1) = 9(3)^0 = 9*1 = 9.