<u>Answer:</u> The partial pressure of hydrogen is 93.9 kPa.
<u>Explanation:</u>
To calculate the partial pressure of hydrogen, we will follow Dalton's Law.
This law states that the total pressure of a mixture of gases is equal to the sum of the individual pressures exerted by the constituent gases.
Mathematically,

According to the question,

We are given:

Putting values in above equation, we get:

Hence, the partial pressure of hydrogen is 93.9 kPa.
The answer is d, because the simplest form of C4H10 is C2H5 which is the empirical formula
Answer:

Explanation:
Hello,
In this case, given that a typical aspirin tablet contains 5.00 grains of pure aspirin, the first step here is to compute the mass of those grans per tablet given that 1.00 g = 15.4 grains:

In such a way, the number of aspirin tablets are computed considering the total mass of aspirin and the mass per tablet:

Best regards.
Answer:
The temperature associated with this radiation is 0.014K.
Explanation:
If we assume that the astronomical object behaves as a black body, the relation between its <em>wavelength</em> and <em>temperature</em> is given by Wien's displacement law.

where,
λmax is the wavelength at the peak of emission
b is Wien's displacement constant (2.89×10⁻³ m⋅K)
T is the absolute temperature
For a wavelength of 21 cm,

Sodium. 11
Carbon. 12
Hydrogen 1
Oxygen 2
Fluuorine. 14
Boron. 5
Lithium. 6
Helium 3
Phosphorus 15
Sulfur 6