The rounded value would be 9,400.
0 and 9 in addition is 9.0 and 9 in multiply would be 0.And the only equation to get the same answer as addition is 9 and 1 in multiply. P.S I need a picture
Answer:
She arrived at school 23 minutes later. At what time did. Veronica arrive at school? (3.MD.A.1). 12. ... same way they have measured objects to the nearest inch: ... Students will then use line plots as a tool to record ... line plots your classmates ... Ask students to determine how many of ... Pedro has a dollar bill in his pocket.
Step-by-step explanation:
Answer:
t3 = 8, t5 = 14
Step-by-step explanation:
t3 = 2 + (3-1) × 3
t3 = 2 + (2) × 3
t3 = 2 + 6
t3 = 8
t5 = 2 + (5-1) × 3
t5 = 2 + (4) × 3
t5 = 2 + 12
t5 = 14
Answer:
Step-by-step explanation:
Given data
Total units = 250
Current occupants = 223
Rent per unit = 892 slips of Gold-Pressed latinum
Current rent = 892 x 223 =198,916 slips of Gold-Pressed latinum
After increase in the rent, then the rent function becomes
Let us conside 'y' is increased in amount of rent
Then occupants left will be [223 - y]
Rent = [892 + 2y][223 - y] = R[y]
To maximize rent =

Since 'y' comes in negative, the owner must decrease his rent to maximixe profit.
Since there are only 250 units available;
![y=-250+223=-27\\\\maximum \,profit =[892+2(-27)][223+27]\\=838 * 250\\=838\,for\,250\,units](https://tex.z-dn.net/?f=y%3D-250%2B223%3D-27%5C%5C%5C%5Cmaximum%20%5C%2Cprofit%20%3D%5B892%2B2%28-27%29%5D%5B223%2B27%5D%5C%5C%3D838%20%2A%20250%5C%5C%3D838%5C%2Cfor%5C%2C250%5C%2Cunits)
Optimal rent - 838 slips of Gold-Pressed latinum