Answer:
Crystalline solids have well-defined edges and faces, diffract x-rays, and tend to have sharp melting points.
In contrast, amorphous solids have irregular or curved surfaces, do not give well-resolved x-ray diffraction patterns, and melt over a wide range of temperatures.
Answer:
The resulting pressure is 2.81 atm
Explanation:
According to Dalton's Law of Partial Pressure, each of the gases (A and B) will exert their pressure independently. If we use Boyle's Law to calculate the pressure of each of the gases separately we have:
Pressure of gas A:
p1V1 = p2V2
p1 = 2.4 atm
V1 = 722 mL
V2 = 722 + 169 = 891 mL
p2 =?
Clearing p2:
p2 = (p1V1)/V2 = (2.4*722)/891 = 1.94 atm
Pressure of gas B:
p1 = 4.6 atm
V1 = 169 mL
V2 = 169+722 = 891 mL
p2=?
Clearing p:
p2 = (4.6*169)/891 = 0.87 atm
Dalton's expression for total partial pressures is equal to:
ptotal = pA + pB = 1.94+0.87 = 2.81 atm
Answer:
D.the wavelength of a wave is the distance between two successive peaks or two successive troughs or a peak and trough
Answer:
Propanoic acid
option D is correct answer
I just had this question it is c