Answer:
Part a)
V = 18.16 V
Part b)

Part c)
P = 672 Watt
Part d)
V = 5.84 V
Part e)

Explanation:
Part a)
When battery is in charging mode
then the potential difference at the terminal of the cell is more than its EMF and it is given as

here we have



now we have

Part b)
Rate of energy dissipation inside the battery is the energy across internal resistance
so it is given as



Part c)
Rate of energy conversion into EMF is given as



Now battery is giving current to other circuit so now it is discharging
now we have
Part d)



Part e)
now the rate of energy dissipation is given as



Without an external agent doing work, heat will always flow from a hotter to a cooler object. Two objects of different temperature always interact. There are three different ways for heat to flow from one object to another. They are conduction, convection, and radiation.
Rainbows are caused by the dispersion of light, which itself consists of a combination of refraction and reflection of light around little droplets of water.
Choice C
Seven
The magnitude is pointing towards the origin and is at - 20 degrees. The combination makes 160 with the x axis: C answer
Eight
They keep doing this. They use distance where they should use displacement but they use distance to try and fool you. It's a mighty poor practice.
The distance between the start and end points is the displacement. That "distance" is 180*sqrt(25) = 900 . The actual distance should be 180*4 + 180*3 = 720 + 540 = 1260. That's what a car's odometer or a bicycle odometer would read. the difference is 360.
I really do object to the wording, but what can I do?
Nine
Nine is the same thing as 8.
Displacement = sqrt(400^2 + 80^2)= sqrt(166400) = 408
The actual distance is 400 + 80 = 480
The difference is the answer = 480 - 408 = 72 <<<< Answer
Ten
This is just the displacement magnitude.
dis = sqrt(30^2 + 80^2)
dis = sqrt(900 + 6400)
dis = sqrt(7300)
dis = 85.44 <<<< Answer D
Twelve
Vi = 2.15*Sin(30) = 1.075 m/s
vf = 0
a = - 9.81
t = ?
<u>Formula</u>
a = (vf - vi)/t
<u>Solve</u>
-9.81 = (0 - 1.075)/t
- 9.81 * t = -1.075
t = 0.11 seconds
Thirteen
I'm leaving this last one to you. You need the initial height xo to answer it properly. Judging by the other questions, this one is right.
Edit
That is a surprise! Really quickly
d = 3.2 m
a = - 9.82
vf = 0
vi = ?
vf^2 = vi^2 - 2*a*d
0 = vi^2 - 2*9.81*3.2
vi = sqrt(19.62*3.2)
vi = 8.0 m/s But that is the vertical component of the speed
v = vi/sin(25)
v = 8.0/sin(25) = 11
Answer:

Explanation:
= Velocity of one lump = 
= Velocity of the other lump = 
m = Mass of each lump = 
The collision is perfectly inelastic as the lumps stick to each other so we have the relation

The velocity of the stuck-together lump just after the collision is
.