Explanation:
Given that,
Each vertical line on the graph is 1 millisecond (0.001 s) of time.
We need to find the period and the frequency of the sound wave. The period of a wave is equal to the each vertical line on graph i.e. 0.001 s.
Let f be the frequency of the sound wave. So,
f = 1/T
i.e.

So, the period and the frequency of the sound waves is 1 milliseond and 1000 Hz respectively.
Answer:
0.33 Amp
8 Watts
Explanation:
The current through the 12 Ω resistor will be given by Ohm's law:
4 V / 12 Ω = 1/3 Amp ≈ 0.33 Amp
The power dissipated on the 2 Ω resistor can be calculated via the formula:
which gives:
4^2 / 2 = 8 Watts
Answer:
0.5m/s2
Explanation:
acceleration= change in velocity/time taken
= v - u/ t
= 10-5/10
=5/10
= 0.5m/s2
In this case, the movement is uniformly delayed (the final
rapidity is less than the initial rapidity), therefore, the value of the
acceleration will be negative.
1. The following equation is used:
a = (Vf-Vo)/ t
a: acceleration (m/s2)
Vf: final rapidity (m/s)
Vo: initial rapidity (m/s)
t: time (s)
2. Substituting the values in the equation:
a = (5 m/s- 27 m/s)/6.87 s
3. The car's acceleration is:
a= -3.20 m/ s<span>^2</span>
Aquifer- the layer permeable rock that has connecting pores & transmit water freely, the artesian well water rises to the surface.
Hope this helps!