Answer:
Part a)

Part b)
T = 4.68 s
Explanation:
Part a)
Shell is fired at speed of 40 m/s at angle of 35 degree
so here we have


since gravity act opposite to vertical speed of the shell so at the highest point of its trajectory the vertical component of the speed will become zero
so at the highest point the speed is given

Part b)
After completing the motion we know that the displacement of the object will be zero in Y direction
so we have




Momentum = (mass) x (speed)
Momentum = (70 kg) x (10 m/s)
<em>Momentum = 700 kg-m/s</em>
<span>The correct frequency when you tune a guitar is
when you hear the right tune in your own hearing and standard. The measure
frequency of a guitar string is when you measure the tune of the string
correctly. This is not the same because manual tuning is affected by many
factors.</span>
Answer:
a) 
b) 
c) 
Explanation:
From the exercise we know the initial velocity of the projectile and its initial height

To find what time does it take to reach maximum height we need to find how high will it go
b) We can calculate its initial height using the following formula
Knowing that its velocity is zero at its maximum height



So, the projectile goes 1024 ft high
a) From the equation of height we calculate how long does it take to reach maximum point



Solving the quadratic equation



So, the projectile reach maximum point at t=2s
c) We can calculate the final velocity by using the following formula:


Since the projectile is going down the velocity at the instant it reaches the ground is:

Answer:b
Explanation:
Given
mass of heavy object is 4m
mass of lighter object is m
A person pushes each block with same force F
According to Work Energy theorem Change in kinetic energy of object is equal to Work done by all the object
As launching velocity is same for both the object so heavier mass must possess greater kinetic energy . For same force heavier mass must be pushed 4 times farther than the light block .


So the correct option is b