Answer:
a) 2.01 g
Explanation:
- Na₂CO₃ (s) + 2AgNO₃ (aq) → Ag₂CO₃ (s) + 2NaNO₃
First we <u>convert 0.0302 mol AgNO₃ to Na₂CO₃ moles</u>, in order to <em>calculate how many Na₂CO₃ moles reacted</em>:
- 0.0302 mol AgNO₃ *
= 0.0151 mol Na₂CO₃
So the remaining Na₂CO₃ moles are:
- 0.0340 - 0.0151 = 0.0189 moles Na₂CO₃
Finally we <u>convert Na₂CO₃ moles into grams</u>, using its <em>molar mass</em>:
- 0.0189 moles Na₂CO₃ * 106 g/mol = 2.003 g Na₂CO₃
The closest answer is option a).
Answer:
Conduction
Explanation:
The heat can be transferred in the substances in three ways: conduction, convection, and radiation.
The conduction happens inside the material, usually a solid, and the heat flows as the molecules of the substance are agitated. The convection happens when there are different substances in touch, so it is the heat passage from a solid to a liquid or gas, from a gas to a liquid or vice versa. The radiation occurs between substances that are far away and the heat flows by electromagnetic waves.
Thus, in the wire, the heat flows by conduction.
Answer:
B
Explanation:
Molarity = 0.010M
Volume = 2.5L
Applying mole-concept,
0.010mole = 1L
X mole = 2.5L
X = (0.010 × 2.5) / 1
X = 0.025moles
0.025moles is present in 2.5L of NaOH solution.
Molar mass of NaOH = (23 + 16 + 1) = 40g/mol
Number of moles = mass / molar mass
Mass = number of moles × molar mass
Mass = 0.025 × 40
Mass = 1g
1g is present in 2.5L of NaOH solution
Answer:
• potential for a species to increase in number
• the heritable genetic variation/ which results from mutation in dna
• the size of a population increases
• competiton for resources that are limited in that specific environment.
Explanation:
these are all factors that would affect natural selection although there are many more.