Answer:
3x-y=12
3x-12=y
to find value of
8x/2y
8x/2(3x-12)
8x/6x-24
8x/6x-8x/24
4/3-x/3
4-x/3
Step-by-step explanation:
Answer:
Distance LM = 5.20 unit (Approx.)
Step-by-step explanation:
Given coordinates;
L(1, 4, 7) and M(2, 9, 8)
Find:
Distance LM
Computation:
Distance between three-dimensional plane = √(x2 - x1)² + (y2 - y1)² + (z2 - z1)²
Distance LM = √(2 - 1)² + (9 - 4)² + (8 - 7)²
Distance LM = √(1)² + (5)² + (1)²
Distance LM = √1 + 25 + 1
Distance LM = √27
Distance LM = 3√3 unit
Distance LM = 3(1.732)
Distance LM = 5.196
Distance LM = 5.20 unit (Approx.)
Answer:
Angle 1 = Angle 2 = 5y -23 (Vertically opposite)
We can see that we have a triangle in the figure
Since the sum of all angles of a triangle is 180,
<em>(2x + 13) + (47) + (5y -23) = 180</em>
<em>2x + 5y + 37 = 180</em>
<em>2x + 5y = 143</em>
5y = 143 -2x -----------------(1)
Assuming l and m to be parallel
<em>angle 1 = 3x (corresponding angles)</em>
<em>5y - 23 = 3x </em>
<em>From equation (1)</em>
<em>143 -2x - 23 = 3x </em>
<em>120 = 5x </em>
x = 24 ---------------------- (2)
Using (2) in (1)
<em>5y = 143 - 2(24)</em>
<em>5y = 143 - 48</em>
<em>5y = 95</em>
y = 19
Therefore,
x = 24
y = 19
Kindly mark Brainliest

![\qquad \tt \rightarrow \:Domain = [-9, -1]](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3ADomain%20%3D%20%5B-9%2C%20-1%5D)
![\qquad \tt \rightarrow \:Range = [-1 , 3]](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3ARange%20%3D%20%5B-1%20%2C%203%5D)
____________________________________

Domain = All possible values of x for which f(x) is defined
[ generally the extension of function in x - direction ]
Range = All possible values of f(x)
[ generally the extension of function in y - direction ]

![\qquad \tt \rightarrow \: domain = [ - 9, -1]](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20domain%20%3D%20%5B%20-%209%2C%20-1%5D)
![\qquad \tt \rightarrow \: range= [ -1,3]](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20range%3D%20%5B%20-1%2C3%5D)
Answered by : ❝ AǫᴜᴀWɪᴢ ❞