Answer:
Classifying stars according to their spectrum is a very powerful way to begin to understand how they work. As we said last time, the spectral sequence O, B, A, F, G, K, M is a temperature sequence, with the hottest stars being of type O (surface temperatures 30,000-40,000 K), and the coolest stars being of type M (surface temperatures around 3,000 K). Because hot stars are blue, and cool stars are red, the temperature sequence is also a color sequence. It is sometimes helpful, though, to classify objects according to two different properties. Let's say we try to classify stars according to their apparent brightness, also. We could make a plot with color on one axis, and apparent brightness on the other axis, like this:
Explanation:
Answer:
14175 j heat released.
Explanation:
Given data:
Mass of aluminium = 350.0 g
Initial temperature = 70.0°C
Final temperature = 25.0°C
Specific heat capacity of Aluminium = 0.9 j/g.°C
Heat changed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Heat change:
ΔT = Final temperature - initial temperature
ΔT = 25.0°C - 70°C
ΔT = -45°C
Q = m.c. ΔT
Q = 350 g × 0.9 j/g.°C × -45°C
Q = -14175 j
Answer:
1. CaO + H₂O ----> Ca(OH)₂
Compound ----- Compound
2. 2 Na + Cl₂ ----> 2 NaCl
Element ----- Element
3. 2 SO₂ + O₂ ----> 2 SO₃
Element ----- Compound
The answer is C. Light because light is a form of energy