Answer:
80 kg
Explanation:
because the liquid with high boiling point is going to be collected the first
Answer:
\frac{dh}{dt}_{h=2cm} =\frac{40}{9\pi}\frac{cm}{2}
Explanation:
Hello,
The suitable differential equation for this case is:

As we're looking for the change in height with respect to the time, we need a relationship to achieve such as:

Of course,
.
Now, since the volume of a cone is
and the ratio
or
, the volume becomes:

We proceed to its differentiation:

Then, we compute 

Finally, at h=2:

Best regards.
Yes I think yesi,m not really suer
Answer : The molecular formula of the compound will be, 
Explanation :
Empirical formula : It is the simplest form of the chemical formula which depicts the whole number of atoms of each element present in the compound.
Molecular formula : it is the chemical formula which depicts the actual number of atoms of each element present in the compound.
For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is :

As we are given that the empirical formula of a compound is
and the molar mass of compound is, 90.09 gram/mol.
The empirical mass of
= 1(12) + 2(1) + 1(16) = 30 g/eq


Molecular formula = 
Thus, the molecular formula of the compound will be, 