<u>Answer:</u> The spacing between the crystal planes is 
<u>Explanation:</u>
To calculate the spacing between the crystal planes, we use the equation given by Bragg, which is:

where,
n = order of diffraction = 2
= wavelength of the light =
(Conversion factor:
)
d = spacing between the crystal planes = ?
= angle of diffraction = 22.20°
Putting values in above equation, we get:

Hence, the spacing between the crystal planes is 
Due to hydrogen bonding there is a formation of cage like structure called lattice in ice due to which <span> density of ice is less than that of water. Moreover, it is a known fact that density of water is maximum at 4°C.</span>
Answer:
1.3×10⁻³ M
Explanation:
Hello,
In this case, given the dissociation reaction of acetic acid:

We can write the law of mass action for it:
![Ka=\frac{[H_3O^+][CH_3CO_2^-]}{[CH_3CO_2H]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BCH_3CO_2%5E-%5D%7D%7B%5BCH_3CO_2H%5D%7D)
Of course, excluding the water as heterogeneous substances are not included. Then, in terms of the change
due to the dissociation extent, we are able to rewrite it as shown below:

Thus, via the quadratic equation or solve, we obtain the following solutions:

Obviously, the solution is 0.00133M which match with the hydronium concentration, thus, answer is: 1.3×10⁻³ M in scientific notation.
Regards.
The shape of a molecule is determined by the location of the nuclei and its electrons. ... Molecular geometry, on the other hand, depends on not only on the number of electron groups, but also on the number of lone pairs. When the electron groups are all bond pairs, they are named exactly like the electron-group geometry.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em><em>✌</em>
Answer:
1. Phosphoric Acid
: Catalyst
2. Methyl Anthranilate
: Reactive
3. Sodium Nitrite
: Reactive
4. Diethyl Ether
: Solvent and reactant
5. Nitrogen
: Sub-product
Explanation:
The phosphoric acid is used as a catalyst for the reaction, the methyl anthranilate will react with the sodium nitrite to produce methyl salicylate, along with the diethyl ether and the nitrogen is a sub-product of the reaction.