Answer:
2.6 ×10^-42
Explanation:
From
∆G= -RTlnK
∆G= -237.2 KJmol-1 or -237.2×10^3 Jmol-1
R= 8.314 Jmol-1K-1
T= 25°C + 273= 298K
-237.2×10^3= 8.314 × 298 × ln K
ln K= -237.2×10^3/2477.572
K = 2.6 ×10^-42
Answer:
0.0583g
Explanation:
The equation of the reaction is;
2HNO3(aq) + Mg(OH)2(aq) -------> Mg(NO3)2(aq) + 2H2O(l)
From the question, number of moles of HNO3 reacted= concentration × volume
Concentration of HNO3= 0.100 M
Volume of HNO3 = 20.00mL
Number of moles of HNO3= 0.100 × 20/1000
Number of moles of HNO3 = 2×10^-3 moles
From the reaction equation;
2 moles of HNO3 reacts with 1 mole of Mg(OH)2
2×10^-3 moles reacts with 2×10^-3 moles ×1/2 = 1 ×10^-3 moles of Mg(OH)2
But
n= m/M
Where;
n= number of moles of Mg(OH)2
m= mass of Mg(OH)2
M= molar mass of Mg(OH)2
m= n×M
m= 1×10^-3 moles × 58.3 gmol-1
m = 0.0583g
Atomic number refers to the proton number of the atom itself. Number of electrons in an atom (an atom that is not reacted with any other molecules / Just the atom alone), is the same as the number of protons, because each electron has 1 negative charge, and each proton 1 positive charge, where they cancel out on each other to become a neutral charge.
So, when atomic number is 6, proton number is also 6, and number of electrons will also be 6 in that atom.
Hope this helps! :)
Answer:
713.51 N/m
Explanation:
Hook's Law: This law states that provided the elastic limit is not exceeded, the extension in an elastic material is directly proportional to the applied force.
From hook's law,
F = ke ...........................Equation 1
Where F = Force exerted on the bowstring, e = Extension/compression of the bowstring, k = Spring constant of the bow.
Make k the subject of the equation,
k = F/e ............................ Equation 2
Given: F = 264 N, e = 0.37 m.
Substitute into equation 2
k = 264/0.37
k = 713.51 N/m
Hence the spring constant of the bow = 713.51 N/m