Answer:
a) 567J
b) 283.5J
c)850.5J
Explanation:
The expression for the translational kinetic energy is,

Substitute,
14kg for m
9m/s for v

The translational kinetic energy of the center of mass is 567J
(B)
The expression for the rotational kinetic energy is,

The expression for the moment of inertia of the cylinder is,

The expression for angular velocity is,

substitute
1/2mr² for I
and vr for w
in equation for rotational kinetic energy as follows:



The rotational kinetic energy of the center of mass is 283.5J
(c)
The expression for the total energy is,

substitute 567J for E(r) and 283.5J for E(R)

The total energy of the cylinder is 850.5J
Hello,
Your answer to this problem is 400/3
Hope this helps!
Net Force = (mass) x (acceleration) (Newton #2)
Net Force = (50 kg) x (6 m/s² down)
Net Force = (50 * 6) (kg-m/s² down)
<em>Net Force = 300 Newtons down</em>
<span>A mechanical wave is a wave that is not capable of transmitting its energy through a vacuum. Mechanical waves require a medium in order to transport their energy from one location to another. A sound wave is an example of a mechanical wave.</span>
Answer:
He needs 1.53 seconds to stop the car.
Explanation:
Let the mass of the car is 1500 kg
Speed of the car, v = 20.5 m/s
He will not push the car with a force greater than, 
The impulse delivered to the object is given by the change in momentum as :

So, he needs 1.53 seconds to stop the car. Hence, this is the required solution.