Answer:
Given: a projectile of initial launch velocity(V) and launch angle ∅ and no air resistance. At the maximum height, the projectile would have a zero contribution of speed from the vertical component(Vy) Therefore, if we say Vx=Vcos∅ is the only speed the projectile has at the instant of maximum height then we can replace Vx with 1/5V and write 1/5V=Vcos∅. Solving for the the launch angle ∅, gives Inverse Cos(1/5)=78.5 degrees.
Answer:
the release will be at 3.266 m distance
Explanation:
mass = 1 Kg
spring constant (k) = 800 N/m
initial compression = 0.20 m
θ = 30⁰



hence the release will be at 3.266 m distance.
The answer to your question is 10.24
Answer: The terrestrial planets, Mars, Earth, Venus, and Mercury all have relatively high densities and low gas content, e.g., they are small and rocky. The Jovian (or giant planets), Jupiter, Saturn, Uranus, and Neptune, are very large and have rather low densities, e.g., they are gaseous.
Explanation:
:)
A projectile is any object that is thrown, dropped or otherwise laughed into the air.
1) If it is dropped - it's motion is caused by just gravitation force
2) if it is thrown - it's motion is caused by gravitation force + force you applied to though it upwards