Answer: C. the elimination of special privileges for members of the first and second estates
Explanation:
The French Revolution was a period of political change in France. The French Revolution led to the proclamation of the first French Republic, radical political and social change, creation of constitutional monarchy, formation of the French consulate etc.
From the options given, the effect of the French Revolution was the the elimination of special privileges for members of the first and second estates. Therefore, the correct option is C.
Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:
(This is correct because the horizontal motion has acceleration zero). Then:
Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:
Then, plugging in the given values, we obtain:
Finally, the effective spring constant of the firing mechanism is 1808N/m.
Answer: Electrons move around the nucleus in fixed orbits of equal levels of energy
Explanation:
The statement that accurately represents the arrangement of electrons in Bohr’s atomic model is that the electrons move around the nucleus in fixed orbits of equal levels of energy.
It should be noted that the electrons have a fixed energy level when they travel around the nucleus in with energies which varies for different levels.
Higher energy levels are depicted by the orbits that are far from the nucleus. There's emission of light when the electrons then return back to a lower energy level.
Answer:
Explanation:
Atoms form chemical bonds to make their outer electron shells more stable. ... An ionic bond, where one atom essentially donates an electron to another, forms when one atom becomes stable by losing its outer electrons and the other atoms become stable (usually by filling its valence shell) by gaining the electrons.