First answer is Wave length
Angle of incidence is 36° and so is the reflection. Both angles are equal.
Answer:
a) 
b) 
Explanation:
Given data:
Electric field = 1.47 N/C
velocity of electron is 
distance of point b from point A is 0.55 m
we know that acceleration of particle is given as
a) for electron



from equation of motion we have



b) for proton


from equation of motion we have



Answer You need to consider that the gravity on earth is 9.8 m/s/s. This means any object you let go on the earths surface will gain 9.8 m/s of speed every second. You need to apply a force on the object in the opposite direction to avoid this acceleration. If you are pushing something up at a constant speed, you are just resisting earths acceleration. The more massive and object is, the greater force is needed to accelerate it. The equation is Force = mass*acceleration. So for a 2kg object in a 9.8 m/s/s gravity you need 2kg*9.8m/s/s = 19.6 Newtons to counteract gravity. Work or energy = force * distance. So to push with 19.6 N over a distance of 2 meters = 19.6 N*2 m = 39.2 Joules of energy. There is an equation that puts together those two equations I just used and it is E = mgh
The amount of Energy to lift an object is (mass) * (acceleration due to gravity) * (height)
:Hence, the Work done to life the mass of 2 kg to a height of 10 m is 196 J. Hope it helps❤️❤️❤️
Explanation:
1. Ideal Mechanical Advantage (IMA): 9
Explanation:
For a wheel and axle system like the steering wheel, the IMA is given by:

where
is the radius of the wheel
is the radius of the axle
For the steering wheel of the problem, we see that
and
, so the IMA is

2. Efficiency: 88.9%
Explanation:
The efficiency of a system is defined as the ratio between the AMA (actual mechanical advantage) and the IMA:

In this problem, AMA=8 and IMA=9, so the efficiency is
