1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaVladis [17]
3 years ago
10

If a car travels 40 km/hr for hours how far has it traveled

Physics
1 answer:
Rainbow [258]3 years ago
8 0
It depends on how many hours!
1 hour = 40km
2 hours = 80km
You might be interested in
A permeability test was run on a compacted sample of dirty sandy gravel. The sample was 175 mm long and the diameter of the mold
LUCKY_DIMON [66]

Answer:

(a). The coefficient of permeability is 8.6\times10^{-3}\ cm/s.

(b). The seepage velocity is 0.0330 cm/s.

(c). The discharge velocity during the test is 0.0187 cm/s.

Explanation:

Given that,

Length = 175 mm

Diameter = 175 mm

Time = 90 sec

Volume= 405 cm³

We need to calculate the discharge

Using formula of discharge

Q=\dfrac{V}{t}

Put the value into the formula

Q=\dfrac{405}{90}

Q=4.5\ cm^3/s

(a). We need to calculate the coefficient of permeability

Using formula of coefficient of permeability

Q=kiA

k=\dfrac{Q}{iA}

k=\dfrac{Ql}{Ah}

Where, Q=discharge

l = length

A = cross section area

h=constant head causing flow

Put the value into the formula

k=\dfrac{4.5\times175\times10^{-1}}{\dfrac{\pi(175\times10^{-1})^2}{4}\times38}

k=8.6\times10^{-3}\ cm/s

The coefficient of permeability is 8.6\times10^{-3}\ cm/s.

(c). We need to calculate the discharge velocity during the test

Using formula of discharge velocity

v=ki

v=\dfrac{kh}{l}

Put the value into the formula

v=\dfrac{8.6\times10^{-3}\times38}{17.5}

v=0.0187\ cm/s

The discharge velocity during the test is 0.0187 cm/s.

(b). We need to calculate the volume of solid in the ample

Using formula of volume

V_{s}=\dfrac{M_{s}}{V_{s}}

Put the value into the formula

V_{s}=\dfrac{4950\times10^{-3}}{2710}

V_{s}=1826.56\ cm^3

We need to calculate the volume of the soil specimen

Using formula of volume

V=A\times L

Put the value into the formula

V=\dfrac{\pi(17.5)^2}{4}\times17.5

V=4209.24\ cm^3

We need to calculate the volume of the voids

V_{v}=V-V_{s}

Put the value into the formula

V_{v}=4209.24-1826.56

V_{v}=2382.68\ cm^3

We need to calculate the seepage velocity

Using formula of velocity

Av=A_{v}v_{s}

v_{s}=\dfrac{Av}{A_{v}}

v_{s}=\dfrac{V}{V_{v}}\times v

Put the value into the formula

v_{s}=\dfrac{4209.24}{2382.68}\times0.0187

v_{s}=0.0330\ cm/s

The seepage velocity is 0.0330 cm/s.

Hence, (a). The coefficient of permeability is 8.6\times10^{-3}\ cm/s.

(b). The seepage velocity is 0.0330 cm/s.

(c). The discharge velocity during the test is 0.0187 cm/s.

8 0
3 years ago
Average distance of 160.0 cm. Its average time was 5.74 seconds. What is its average speed?
Gre4nikov [31]
Your answer is .279m/s
5 0
3 years ago
What is the best reason for having a strong hypothesis?
Elena-2011 [213]

Answer:

the answer is C

Explanation:

i did this

7 0
2 years ago
4application of energy from water
RSB [31]
<span><span>Fuel Extraction and Production – Water is a critical resource for the drilling and mining of natural gas, coal, oil, and uranium. In many cases, fuel extraction also produces wastewater, as with natural gas and oil wells and coal slurry ponds.
</span><span>
Fuel Refining and Processing – Oil, uranium, and natural gas all require refining before they can be used as fuels – a process that uses substantial amounts of water.
</span><span>
Fuel Transportation – Water is used to transport coal through slurries — pipelines of finely ground coal mixed with water — and to test energy pipelines for leaks.[1]</span><span>Emissions Control – Many thermoelectric power plants emit sulfur, mercury, particulates, carbon dioxide, and other pollutants, and require pollution control technologies. These technologies also require significant amounts of water to operate.</span></span>
5 0
3 years ago
Describe the motion of a swing that requires 6 seconds to complete one cycle. What is its period and the frequency? Round to the
shutvik [7]

Period = 6 seconds and frequency = 0.167Hz .

<u>Explanation:</u>

We have , the motion of a swing that requires 6 seconds to complete one cycle. Period is the amount of time needed to complete one oscillation . And in question it's given that 6 seconds is needed to complete one cycle. Hence ,Period of the motion of a swing is 6 seconds . Frequency is the number of vibrations produced per second and is calculated with the formula of  \frac{1}{t} . SI unit of frequency is Hertz or Hz. We know that time period is 6 seconds so frequency =   \frac{1}{t}

⇒ frequency = \frac{1}{time}

⇒ frequency = \frac{1}{6}

⇒ frequency = 0.167Hz

Therefore , Period = 6 seconds and frequency = 0.167Hz .

7 0
3 years ago
Other questions:
  • A rock is thrown straight upward off the edge of a balcony that is 5 m above the ground. The rock rises 10 m, then falls all the
    7·1 answer
  • DO not answer unless you actually now how to do this!!
    5·1 answer
  • An aluminum rod of length 3.3 m and crosssectional area 3.8 cm2 is inserted vertically into a thermally insulated vessel contain
    5·1 answer
  • A ring of radius 8 cm that lies in the ya plane carries positive charge of 2 μC uniformly distributed over its length. A particl
    12·1 answer
  • How do you calculate the rate of change of velocity
    6·1 answer
  • Three biological applications of electricity
    15·1 answer
  • Why is a protective apron or lab coat important to use when working with acids?
    15·2 answers
  • Kūna veikia 3N jėga kurios petys 20 cm. Koks jos momentas?​
    9·1 answer
  • an airplane is moving at a speed of 75 m/s. as it. lands on a. runwsys. if. the runway is. 500m long, what is the acceleration o
    11·1 answer
  • A shopping mall is putting up lights for the holidays. When they plug the holiday lights in they do not light up.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!