Answer:
E = 0.437 N/C
Explanation:
Given that,
Charge, 
Electric force, 
Let the strength of the electric field is E. We know that, the electric force is given by :
F = qE
Where
E is the electric field strength

So, the strength of the electric field is equal to 0.437 N/C.
I think it is 4 cm because if you look hard enough and work the problem the number pops in you head. Lol
The wires should be attached to each screw on the light not only one
Answer:
Q = c M ΔT where c is the heat capacity and M the mass present
Q2 / Q1 = M2 / M1 since the other factors are the same
M = ρ V where ρ is the density
M = ρ Π (d / 2)^2 where d is the diameter of the sphere
M2 / M1 = (2 D/2)^2 / (D/2)^2 = 4
It will take 4Q heat to heat the second sphere
Answer:
a) F = 1.26 10⁵ N, b) F = 2.44 10³ N, c) F_net = 1.82 10³ N directed vertically upwards
Explanation:
For this exercise we must use the relationship between momentum and momentum
I = Δp
F t = p_f -p₀
a) It asks to find the force
as the man stops the final velocity is zero
F = 0 - p₀ / t
the speed is directed downwards which is why it is negative, therefore the result is positive
F = m v₀ / t
F = 63.5 7.89 / 3.99 10⁻³
F = 1.26 10⁵ N
b) in this case flex the knees giving a time of t = 0.205 s
F = 63.5 7.89 / 0.205
F = 2.44 10³ N
c) The net force is
F_net = Sum F
F_net = F - W
F_net = F - mg
let's calculate
F_net = 2.44 10³ - 63.5 9.8
F_net = 1.82 10³ N
since it is positive it is directed vertically upwards