Answer:
a) It is moving at
when reaches the ground.
b) It is moving at
when reaches the ground.
Explanation:
Work energy theorem states that the total work on a body is equal its change in kinetic energy, this is:
(1)
with W the total work, Ki the initial kinetic energy and Kf the final kinetic energy. Kinetic energy is defined as:
(2)
with m the mass and v the velocity.
Using (2) on (1):
(3)
In both cases the total work while the objects are in the air is the work gravity field does on them. Work is force times the displacement, so in our case is weight (w=mg) of the object times displacement (d):
(4)
Using (4) on (3):
(5)
That's the equation we're going to use on a) and b).
a) Because the branch started form rest initial velocity (vi) is equal zero, using this and solving (5) for final velocity:


b) In this case the final velocity of the boulder is instantly zero when it reaches its maximum height, another important thing to note is that in this case work is negative because weight is opposing boulder movement, so we should use -mgd:

Solving for initial velocity (when the boulder left the volcano):


Answer:
Speed of air = 1106.38 ft/s
Explanation:
Speed of sound in air with temperature

Here speed is in m/s and T is in celcius scale.
T = 50°F

Substituting

Now we need to convert m/s in to ft/s.
1 m = 3.28 ft
Substituting

Speed of air = 1106.38 ft/s
Answer:
work done will be equal to 305.05 J
Explanation:
We have given force exerted F = 45 N
Angle with the horizontal 
Distance moved due to exerted force d = 9.1 m
Work done is equal to
, here F is force
is angle with horizontal and d is distance moved due to force
So work done 
So work done will be equal to 305.05 J
Lava cools so quickly that ions do not have time to arrange themselves into crystals will form igneous rocks with a glassy texture. Lava is the substance that flows from the volcano's.
This should help look at the pictures?