Answer:
Acceleration = 0.0282 m/s^2
Distance = 13.98 * 10^12 m
Explanation:
we will apply the energy theorem
work done = ΔK.E ( change in Kinetic energy ) ---- ( 1 )
<em>where :</em>
work done = p * t
= 15 * 10^6 watts * ( 1 year ) = 473040000 * 10^6 J
( note : convert 1 year to seconds )
and ΔK.E = 1/2 mVf^2 given ; m = 1200 kg and initial V = 0
<u>back to equation 1 </u>
473040000 * 10^6 = 1/2 mv^2
Vf^2 = 2(473040000 * 10^6 ) / 1200
∴ Vf = 887918.92 m/s
<u>i) Determine how fast the rocket is ( acceleration of the rocket )</u>
a = Vf / t
= 887918.92 / ( 1 year )
= 0.0282 m/s^2
<u>ii) determine distance travelled by rocket </u>
Vf^2 - Vi^2 = 2as
Vi = 0
hence ; Vf^2 = 2as
s ( distance ) = Vf^2 / ( 2a )
= ( 887918.92 )^2 / ( 2 * 0.0282 )
= 13.98 * 10^12 m
Answer:
The acceleration of the wallet is 
Explanation:
Given that,
Radius of purse r= 2.30 m
Radius of wallet r'= 3.45 m
Acceleration of the purse 
We need to calculate the acceleration of the wallet
Using formula of acceleration

Both the purse and wallet have same angular velocity








Hence, The acceleration of the wallet is 
Answer:
(a) The final angular speed is 12.05 rad/s
(b) The time taken to turn 5.5 revolutions is 5.74 s
Explanation:
Given;
number of revolutions, θ = 5.5 revolutions
acceleration of the wheel, α = 20 rpm/s
number of revolutions in radian is given as;
θ = 5.5 x 2π = 34.562 rad
angular acceleration in rad/s² is given as;

(a)
The final angular speed is given as;

(b) the time taken to turn 5.5 revolutions is given as

Answer: D
Explanation: I have my answers VS. Go0gle answers (go0gle answers are pics)
(A) Both have the same day length. Well, Venus doesn't havve the same amount of days. (I already know off the top of my head, but I still searched it up)
(B) Both rotate in the same direction. In school (before Virus) they would always show diagrams of the planets on the projector and Venus doesn't rotate
(C) Both have ample water. No. Venus doesn't have much water >_>
(D) Both have a solid inner core and a liquid outer core. Yesh. In my lessons (before), Venus has a solid inner core and liquid outer core.