It is a battery (the long and short lines represent 2 cells)
        
             
        
        
        
Answer:
<em><u>M</u></em><em><u>a</u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u>m</u></em><em><u>a</u></em><em><u>t</u></em><em><u>i</u></em><em><u>c</u></em><em><u>a</u></em><em><u>l</u></em><em><u>l</u></em><em><u>y</u></em><em><u>:</u></em>
That will be
<em>=</em><em> </em><em>1</em><em>5</em><em>0</em><em>0</em><em> </em><em>x</em><em> </em><em>1</em><em>5</em><em> </em><em>x</em><em> </em><em>4</em><em>5</em><em>0</em><em>0</em>
<em>=</em><em> </em><em><u>1</u></em><em><u>0</u></em><em><u>1</u></em><em><u>,</u></em><em><u>2</u></em><em><u>5</u></em><em><u>0</u></em><em><u>,</u></em><em><u>0</u></em><em><u>0</u></em><em><u>0</u></em>
 
        
             
        
        
        
Answer:
 
Explanation:
given,
 s = 400- 16 t²
we know,
Velocity of an object is defined as the change in displacement per unit change in time.
velocity an also be return as 
 
 
 
 
Hence, instantaneous velocity function given by 
To calculate instantaneous velocity, you need to insert value of time.
ex, instantaneous velocity at t = 4 s
        v = -32 x 4 = -128 m/s.
 
        
             
        
        
        
Answer:

Explanation:
To find Depth D of lake we must need to find the time taken to hit the water.So we use equation of simple motion as:
Δx=vit+(1/2)at²

As we have find the time taken now we need to find the final velocity vf from below equation as

So the depth of lake is given by:
 first we need to find total time as
t=3.0-1.01 =1.99 s

 
        
             
        
        
        
Answer:

Explanation:
<u>Accelerated Motion
</u>
When a body changes its speed at a constant rate, i.e. same changes take same times, then it has a constant acceleration. The acceleration can be positive or negative. In the first case, the speed increases, and in the second time, the speed lowers until it eventually stops. The equation for the speed vf at any time t is given by

where a is the acceleration, and vo is the initial speed
.
The train has two different types of motion. It first starts from rest and has a constant acceleration of  for 182 seconds. Then it brakes with a constant acceleration of
 for 182 seconds. Then it brakes with a constant acceleration of  until it comes to a stop. We need to find the total distance traveled.
 until it comes to a stop. We need to find the total distance traveled.
The equation for the distance is

Our data is

Let's compute the first distance X1


Now, we find the speed at the end of the first period of time


That is the speed the train is at the moment it starts to brake. We need to compute the time needed to stop the train, that is, to make vf=0



Computing the second distance


The total distance is


