Answer:

Explanation:
m = Mass of roller coaster = 2000 kg
r = Radius of loop = 24 m
v = Velocity of roller coaster = 18 m/s
g = Acceleration due to gravity = 
Normal force at the point will be

The force exerted on the track is
.
The distance covered is 115 m
Explanation:
The motion of Ileana is a uniformly accelerated motion (constant acceleration), therefore we can use the following suvat equation:

where
s is the distance covered
u is the initiaal velocity
v is the final velocity
t is the time elapsed
In this problem, we have:
u = 4.20 m/s
v = 5.00 m/s
t = 25.0 s
Therefore, we can re-arrange the equation to find the distance covered:

Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
The potential energy of an object is defined by the equation: PE = mgh, where m = the mass of the object, g = the gravitational acceleration and h = the object's height above the ground.
I believe the answer to your question is “Lithosphere plate boundaries”
The planet Earth is covered by a layer formed by land and rocks called the earth's crust or lithosphere. This crust is not smooth and uniform, but rather irregular and composed of tectonic plates, also called lithosphere plates. These plates are not fixed as they are under the magma (high temperature molten rock).
Hope this helps!:)
Answer:
E) momentum and mechanical energy
Explanation:
In the context, an object is attached to the another mass with a spring which is initially at a rest position. Now when the spring is compressed, the two masses moves with the same speed. Now since the both the masses combines with the spring to move together they are considered as one system and in this case the momentum and the kinetic energy will be conserved.
The kinetic energy and momentum of the system after collision and the kinetic energy and momentum of the two masses before collision will be constant.