1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Daniel [21]
3 years ago
14

Find the measure of angle x in the figure below a) 15° b) 25° c) 30° d) 60°

Mathematics
1 answer:
Andrew [12]3 years ago
6 0

Answer:

Most Likely C

Step-by-step explanation:

Using the triangle sum proof:

180-(75+75)=30

The blank angle measure and where "X" is are vertical angles.

Vertical angles have the same measurement.

x should be equal to 30°.

You might be interested in
What is 2.03-1.9= A:0.67 B:0.4 C:1.2 D:0.13​
Hunter-Best [27]

Answer:

0.13

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
If flipping a coin gives you a 50/50 chance of it landing on heads or tails, does this mean a coin only has two sides? Who else
Pachacha [2.7K]

yesss bru im so bored

5 0
3 years ago
Read 2 more answers
Which pairs of integers would have a negative product? ​
iVinArrow [24]

Answer:

(_1,_7),(_2,_6),(_3,_5),(_4,_4)(_5,_3)

4 0
3 years ago
ABCD is a parallelogram. Segment AC = 4x + 10. Find the value of x and y.
valkas [14]

Answer:

The values of x and y in the diagonals of the parallelogram are x=0 and y=5

Step-by-step explanation:

Given that ABCD is a parallelogram

And segment AC=4x+10

From the figure we have the diagonals AC=3x+y and BD=2x+y

By the property of parallelogram the diagonals are congruent

∴ we can equate the diagonals AC=BD

That is 3x+y=2x+y

3x+y-(2x+y)=2x+y-(2x+y)

3x+y-2x-y=2x+y-2x-y

x+0=0 ( by adding the like terms )

∴ x=0

Given that segment AC=4x+10

Substitute x=0  we have AC=4(0)+10

=0+10

=10

∴ AC=10

Now (3x+y)+(2x+y)=10

5x+2y=10

Substitute x=0, 5(0)+2y=10

2y=10

y=\frac{10}{2}

∴ y=5

∴ the values of x and y are x=0 and y=5

5 0
4 years ago
Please help me with this​
denis23 [38]

Answer:

20) \displaystyle [4, 1]

19) \displaystyle [-5, 1]

18) \displaystyle [3, 2]

17) \displaystyle [-2, 1]

16) \displaystyle [7, 6]

15) \displaystyle [-3, 2]

14) \displaystyle [-3, -2]

13) \displaystyle NO\:SOLUTION

12) \displaystyle [-4, -1]

11) \displaystyle [7, -2]

Step-by-step explanation:

20) {−2x - y = −9

{5x - 2y = 18

⅖[5x - 2y = 18]

{−2x - y = −9

{2x - ⅘y = 7⅕ >> New Equation

__________

\displaystyle \frac{-1\frac{4}{5}y}{-1\frac{4}{5}} = \frac{-1\frac{4}{5}}{-1\frac{4}{5}}

\displaystyle y = 1[Plug this back into both equations above to get the x-coordinate of 4]; \displaystyle 4 = x

_______________________________________________

19) {−5x - 8y = 17

{2x - 7y = −17

−⅞[−5x - 8y = 17]

{4⅜x + 7y = −14⅞ >> New Equation

{2x - 7y = −17

_____________

\displaystyle \frac{6\frac{3}{8}x}{6\frac{3}{8}} = \frac{-31\frac{7}{8}}{6\frac{3}{8}}

\displaystyle x = -5[Plug this back into both equations above to get the y-coordinate of 1]; \displaystyle 1 = y

_______________________________________________

18) {−2x + 6y = 6

{−7x + 8y = −5

−¾[−7x + 8y = −5]

{−2x + 6y = 6

{5¼x - 6y = 3¾ >> New Equation

____________

\displaystyle \frac{3\frac{1}{4}x}{3\frac{1}{4}} = \frac{9\frac{3}{4}}{3\frac{1}{4}}

\displaystyle x = 3[Plug this back into both equations above to get the y-coordinate of 2]; \displaystyle 2 = y

_______________________________________________

17) {−3x - 4y = 2

{3x + 3y = −3

__________

\displaystyle \frac{-y}{-1} = \frac{-1}{-1}

\displaystyle y = 1[Plug this back into both equations above to get the x-coordinate of −2]; \displaystyle -2 = x

_______________________________________________

16) {2x + y = 20

{6x - 5y = 12

−⅓[6x - 5y = 12]

{2x + y = 20

{−2x + 1⅔y = −4 >> New Equation

____________

\displaystyle \frac{2\frac{2}{3}y}{2\frac{2}{3}} = \frac{16}{2\frac{2}{3}}

\displaystyle y = 6[Plug this back into both equations above to get the x-coordinate of 7]; \displaystyle 7 = x

_______________________________________________

15) {6x + 6y = −6

{5x + y = −13

−⅚[6x + 6y = −6]

{−5x - 5y = 5 >> New Equation

{5x + y = −13

_________

\displaystyle \frac{-4y}{-4} = \frac{-8}{-4}

\displaystyle y = 2[Plug this back into both equations above to get the x-coordinate of −3]; \displaystyle -3 = x

_______________________________________________

14) {−3x + 3y = 3

{−5x + y = 13

−⅓[−3x + 3y = 3]

{x - y = −1 >> New Equation

{−5x + y = 13

_________

\displaystyle \frac{-4x}{-4} = \frac{12}{-4}

\displaystyle x = -3[Plug this back into both equations above to get the y-coordinate of −2]; \displaystyle -2 = y

_______________________________________________

13) {−3x + 3y = 4

{−x + y = 3

−⅓[−3x + 3y = 4]

{x - y = −1⅓ >> New Equation

{−x + y = 3

________

\displaystyle 1\frac{2}{3} ≠ 0; NO\:SOLUTION

_______________________________________________

12) {−3x - 8y = 20

{−5x + y = 19

⅛[−3x - 8y = 20]

{−⅜x - y = 2½ >> New Equation

{−5x + y = 19

__________

\displaystyle \frac{-5\frac{3}{8}x}{-5\frac{3}{8}} = \frac{21\frac{1}{2}}{-5\frac{3}{8}}

\displaystyle x = -4[Plug this back into both equations above to get the y-coordinate of −1]; \displaystyle -1 = y

_______________________________________________

11) {x + 3y = 1

{−3x - 3y = −15

___________

\displaystyle \frac{-2x}{-2} = \frac{-14}{-2}

\displaystyle x = 7[Plug this back into both equations above to get the y-coordinate of −2]; \displaystyle -2 = y

I am delighted to assist you anytime my friend!

7 0
3 years ago
Other questions:
  • A software designer is mapping the streets for a new racing game. All of the streets are depicted as either perpendicular or par
    15·1 answer
  • Please help I don't understand how to answer this please help I will brainlist if you get it correct
    11·1 answer
  • The cost of a New York Yankee baseball cap is $24.00. The local sporting goods store sells it for $30.00. Find the markup rate.
    8·2 answers
  • 5(x+7)=10<br> Ghggggggggggggggg
    8·1 answer
  • 15 x -3=?<br><br> 5<br> 45<br> -45<br> -5
    13·1 answer
  • If two angles are supplementary, then they are not congruent. Which diagram provides a counterexample for the statement?
    7·2 answers
  • Spiral Review (CC5,NBT.2. CC.S.NBT.6, CC,S.DVF. 1)
    11·1 answer
  • M/N(-3)= I need to know the answer
    15·1 answer
  • Given the expressions are equivalent (3x + 2)^2 - (mx^2 + 7) = 5x^2 + 12x - 3 2 - 3 What is the value of m?​
    11·1 answer
  • Solve 58 - 10x&lt; 20 + 9x.<br> -<br> O A. x2<br> O B. Xs2<br> O c. xs-2<br> O D. x2-2
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!