Answer:
a. increase
Explanation:
Based on the kinetic molecular theory of gases, the average kinetic energy of the system will increase.
- The average kinetic energy is heat
- If temperature increases, heat of a system will also rise.
- According the kinetic molecular theory "the temperature of the gas is a measure of the average kinetic energy of the molecules"
Therefore, due to the increase in temperature, the average kinetic energy of the system increases.
Answer:
Random samples
Explanation:
It needs to be random so that there isn't bias that would skew the consistency
According to sources, the most probable answer to this query is that when solutions reaches equilibrium, the amount of concentration of two or more matter combined in this solution becomes equal.
Thank you for your question. Please don't hesitate to ask in Brainly your queries.
Answer:
510 g NO₂
General Formulas and Concepts:
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
- Reading the Periodic Table
- Writing Compounds
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
6.7 × 10²⁴ molecules NO₂ (Nitrogen dioxide)
<u>Step 2: Define conversions</u>
Avogadro's Number
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of NO₂ - 14.01 + 2(16.00) = 46.01 g/mol
<u>Step 3: Use Dimensional Analysis</u>
<u />
= 511.901 g NO₂
<u>Step 4: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules.</em>
511.901 g NO₂ ≈ 510 g NO₂
Answer:
3.676 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have different values of V and T:
(V₁T₂) = (V₂T₁)
V₁ = 3.5 L, T₁ = 25°C + 273 = 298 K,
V₂ = ??? L, T₂ = 40°C + 273 = 313 K,
- Applying in the above equation
(V₁T₂) = (V₂T₁)
∴ V₂ = (V₁T₂)/(T₁) = (3.5 L)(313 K)/(298 K) = 3.676 L.