Answer:
- <u><em>It is positive when the bonds of the product store more energy than those of the reactants.</em></u>
Explanation:
The <em>standard enthalpy of formation</em>, <em>ΔHf</em>, is defined as the energy required to form 1 mole of a substance from its contituent elements under standard conditions of pressure and temperature.
Then, per defintion, when the elements are already at their standard states, there is not energy involved to form them from that very state; this is, the standard enthalpy of formation of the elements in their standard states is zero.
It is not zero for the compounds in its standard state, because energy should be released or absorbed to form the compounds from their consituent elements. Thus, the first choice is false.
When the bonds of the products store more energy than the those of the reactants, the difference is:
- ΔHf = ΔHf products - ΔHf reactants > 0, meaning that ΔHf is positive. Hence, the second statement is true.
Third is false because forming the compounds may require to use (absorb) or release (produce) energy, which means that ΔHf could be positive or negative.
Fourth statement is false, because the standard state of many elements is not liquid. For example, it is required to supply energy to iron to make it liquid. Thus, the enthalpy of formation of iron in liquid state is not zero.
Answer:
the answer is D) 23 carbon atoms, 34 hydrogen atoms, and 2 oxygen atoms
Explanation:
i took the test and got a 100%
Answer:
Explanation:
Answer:
A. to determine the efficiency of the reaction
Explanation:
Percentage is the ratio of the actual yield to theoretical yield as a percentage. It is calculated by dividing the actual yield by theoretical yield then multiplying by 100%.
Calculation of percentage yield is important as it helps in the determination of efficiency of a reaction. For example in most industries for the purpose of making the most product with the least waste.
Additionally, calculating the percentage yield helps in determining other products that may be formed during the reactions.
Answer:
The answer to this is
The column of water in meters that can be supported by standard atmospheric pressure is 10.336 meters
Explanation:
To solve this we first list out the variables thus
Density of the water = 1.00 g/mL =1000 kg/m³
density of mercury = 13.6 g/mL = 13600 kg/m³
Standard atmospheric pressure = 760 mmHg or 101.325 kilopascals
Therefore from the equation for denstity we have
Density = mass/volume
Pressure = Force/Area and for a column of water, pressure = Density × gravity×height
Therefore where standard atmospheric pressure = 760 mmHg we have for Standard tmospheric pressure= 13600 kg/m³ × 9.81 m/s² × 0.76 m = 101396.16 Pa
This value of pressure should be supported by the column of water as follows
Pressure = 101396.16 Pa = kg/m³×9.81 m/s² ×h
∴
= 10.336 meters
The column of water in meters that can be supported by standard atmospheric pressure is 10.336 meters