Answer:
Chimia ne poate ajuta să înțelegem, monitorizăm, protejăm și îmbunătățim mediul din jurul nostru. Chimiștii dezvoltă instrumente și tehnici pentru a ne asigura că putem vedea și măsura poluarea aerului și a apei.
Explanation: I speak english i just know Romanian language
Answer:
Would it be<em><u> 7.69 seconds</u></em>?
Explanation:
Answer:
Explanation:
Group one elements are alkali metals. All alkali metal have one valance electron. They loses their one valance electron and from cation with charge of +1.
Charges on group one.
Hydrogen = +1
Lithium = +1
Sodium = +1
Potassium = +1
Rubidium = +1
Cesium = +1
Francium = +1
Group two elements are alkaline earth metals. All alkaline earth metal have two valance electron. They loses their two valance electron and from cation with charge of +2.
Charges on group two.
Beryllium = +2
Magnesium = +2
Calcium = +2
Strontium = +2
Barium= +2
Radium = +2
Group 13 elements are boron family. All elements have three valance electrons. They loses their three valance electron and from cation with charge of +3.
Charges on group 13.
Boron = +3
Aluminium = +3
Gallium = +3
Indium = +3
Thallium= +3
Group 13 elements are also shows +1 charge by losing one valance electron.
Answer:
![[Pb^{2+}]=3.9 \times 10^{-2}M](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%3D3.9%20%5Ctimes%2010%5E%7B-2%7DM)
this is the concentration required to initiate precipitation
Explanation:
⇄
Precipitation starts when ionic product is greater than solubility product.
Ip>Ksp
Precipitation starts only when solution is supersaturated because solution become supersaturated then it does not stay in this form and precipitation starts itself only solution become saturated.
This usually happens when two solutions containing separate sources of cation and anion are mixed together and here also we are mixing lead (||)nitrate solution(source of lead(||)) into the Cl- solution.
![Ip=[Pb^{2}][2Cl^-]^2=Ksp](https://tex.z-dn.net/?f=Ip%3D%5BPb%5E%7B2%7D%5D%5B2Cl%5E-%5D%5E2%3DKsp)

lets solubility=S
![[Pb^{2+}] = S](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%20%3D%20S)
![[Cl^-]=2S](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D2S)
![Ksp=[Pb^{2+}]\times [Cl^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BPb%5E%7B2%2B%7D%5D%5Ctimes%20%5BCl%5E-%5D%5E2)


![S=\sqrt[3]{\frac{Ksp}{4} }](https://tex.z-dn.net/?f=S%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BKsp%7D%7B4%7D%20%7D)

this is the concentration required to initiate precipitation