Star clusters is the only thing i can think of that would apply.
Solve these problems like weighted averages:
The first one:
Multiply the masses (isotope numbers) by the decimal form of the percentage. Add them
0.076 (6) + 0.924 (7) = 6.924
The second one:
0.2 (10) + 0.8 (11) = 10.8
If you think about it, these answers make sense. 6.924 is much closer to 7 than to 6 (since there's a lot more lithium-7 than there is lithium-6). 10.8 is closer to 11 than to 10.
Explanation:
<h3 /><h2>
<em><u>H2 </u></em><em><u>+</u></em><em><u> </u></em><em><u>O2 </u></em><em><u>=</u></em><em><u> </u></em><em><u>H2O</u></em></h2>
<h2>
<em><u>Hydrogen</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>Oxygen</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>Water</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em></h2>
<em><u>(~‾▿‾)~</u></em><em><u>(~‾▿‾)~</u></em><em><u>(~‾▿‾)~</u></em><em><u>(~‾▿‾)~</u></em><em><u>(~‾▿‾)~</u></em><em><u>(~‾▿‾)~</u></em><em><u>(~‾▿‾)~</u></em>
3. 4 g of a nonelectrolyte dissolved in 78. 3 g of water produces a solution. The molar mass of the solute will be 17.94.
<h3>
What is molar mass?</h3>
Molar mass of a substance is its mass in grams in per mole of a solution.
Freezing point: Freezing point of a substance is a temperature at which a liquid starts to solidify.
Depression in the freezing point can be calculated
[Depression in freezing point of pure solvent—Freezing point of solution] =[(0) - (-4.5)] °C =4.5 °C
molar mass = Number of moles of solute m / Mass of solvent in Kg
3.4g / M x 1/ 0.0783 kg = 43.42
Substitute AT by 4.5°C , Kr by 1.86 °C/m, and m by 43.42 m in equation (1) as follows:
1.86 x 43.42 / 4.5 = 17.94
Therefore, molar mass of solute to be 17.94.
To learn more about molar mass, refer to the link:
brainly.com/question/22997914
#SPJ4