Answer:
B. 4.76 atm
Explanation:
= Initial pressure = 3.8 atm
= Initial temperature = 
= Final pressure
= Final temperature = 
From Gay Lussac's law we have

The pressure inside the can would be
.
Because just like compounds, the table of chemicals can be looked at as having all the different pieces of it. So the different chemicals are the different "elements" to the periodic table.
Answer:
1 - e, 2 - k, 3 - a, 4 - i, 5 - b,
Explanation:
The ratio of the amount of analyte in the stationary phase to the amount in the mobile phase. --- Retention factor.
Time it takes after sample injection into the column for the analyte peak to appear as it exits the column. -- Retention time
The process of extracting a component that is adsorbed to a given material by use of an appropriate solvent system. -- Elution
Measure of chromatographic column efficiency. The greater its value, the more efficient the column. -- Theoretical plate number
Gas, liquid, or supercritical fluid used to transport the sample in chromatographic separations. -- Mobile phase
Immiscible and immobile, it is packed within a column or coated on a solid surface. -- Stationary phase
Answer:
123.0*12.35/(0.05*6.049)
first do in small bracket 123.0*12.35/0.30245
and then divide 123.0*40.83319557
and multiply 5022.483055