<span>Inertia keeps us orbiting because any object with mass has the tendency to resist changes to their direction and speed of movement. Combine that with the interaction of the gravitational attraction of the sun, and that is what keeps Earth in orbit. The sun’s gravitational force is one that is proportional to Earth’s mass, and it acts in a way that is almost exactly perpendicular to Earth’s motion. This keeps Earth from spinning into the sun or far away from it.</span>
Answer:
The time it takes the proton to return to the horizontal plane is 7.83 X10⁻⁷ s
Explanation:
From Newton's second law, F = mg and also from coulomb's law F= Eq
Dividing both equations by mass;
F/m = Eq/m = mg/m, then
g = Eq/m --------equation 1
Again, in a projectile motion, the time of flight (T) is given as
T = (2usinθ/g) ---------equation 2
Substitute in the value of g into equation 2

Charge of proton = 1.6 X 10⁻¹⁹ C
Mass of proton = 1.67 X 10⁻²⁷ kg
E is given as 400 N/C, u = 3.0 × 10⁴ m/s and θ = 30°
Solving for T;

T = 7.83 X10⁻⁷ s
Acceleration = (change of speed) / (time for the change)
Change in speed = (22 - 4) = 18 m/s.
Time for the change = 3 sec.
Acceleration = 18/3 = 6 m/s per second.
Answer:
There are six main components, or parts, of weather. They are <u>temperature, atmospheric pressure, wind, humidity, precipitation, and cloudiness</u>. Together, these components describe the weather at any given time. These changing components, along with the knowledge of atmospheric processes, help meteorologists—scientists who study weather—forecast what the weather will be in the near future.