1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mkey [24]
2 years ago
11

1.Round off 378811 to the nearest hundreds,thousands and ten thousand

Mathematics
2 answers:
Blizzard [7]2 years ago
8 0
<h3>378811=378800__379000__380000</h3><h3>267988=268000__268000__270000</h3><h3>250260=250300__250000__250000</h3><h3>196596=196600__197000__200000</h3><h3>193171=193200__194000__200000</h3>
Snowcat [4.5K]2 years ago
6 0

Given:

The numbers are 378811, 267988, 250260, 196596, 193171.

To find:

The approximate value of the given numbers to the nearest hundreds, thousands and ten thousand.

Solution:

The required values shown in the below table:

Numbers       Nearest hundreds   Nearest thousands   Nearest ten thousand

378811                378800                     379000                        380000

267988              268000                    268000                        270000

250260              250300                    250000                        250000

196596               196600                      197000                        200000

193171                 193200                       193000                       190000

You might be interested in
Frieda worked 26 hours 13 minutes last week. She earns $18.75 per hour. What is Frieda's pay for this work period? Round your an
Leya [2.2K]

Answer:

$491.56

Step-by-step explanation:

Total number of hours worked by Frieda = 26 hours 13 minutes

lets convert 13 minutes to hour

60 minutes = 1 hour\

1 minutes = 1/60 hours

13 minutes = 13/60 hours

Thus,

Total number of hours worked by Frieda = (26 + 13/60) hours

In 1 hours Freida earns =  $18.75

in  (26 + 13/60) hours Frieda earns =  $18.75((26 + 13/60)) = 487.5 + 4.06

in  (26 + 13/60) hours Frieda earns = $491.56  (Answer)

4 0
2 years ago
Write an expression with a value of 12.it should contain four numbers and two different operations
sergey [27]
Roughly what I gave your doppelganger (you + 1) a few minutes ago . . .

       [ (4 + 3)² - 1 ]  divided by  (7 - 3) .

4 0
3 years ago
Simplify the expression.
Ad libitum [116K]

Answer:

-10p/3+32-3/2^p

Step-by-step explanation:

8 0
2 years ago
What is the answer to this question?​
Yanka [14]

Answer:

Step-by-step explanation:

there is no question

6 0
3 years ago
Read 2 more answers
Help with my algebra homework.
just olya [345]
Q1. The answer is \frac{(x-4)(x-4)}{(x+3)(x+1)}= \frac{ x^{2}-4x-4x+16}{ x^{2} +x+3x+3} = \frac{ x^{2} -8x+16}{ x^{2} +4x+3}
\frac{ x^{2} -16}{ x^{2} +5x+6} / \frac{ x^{2} +5x+4}{ x^{2} -2x-8} = \frac{ x^{2} -16}{ x^{2} +5x+6}* \frac{x^{2} -2x-8}{ x^{2} +5x+4}
Now, factorise the numerators and denominators:
x² - 16 = x² - 4² = (x + 4)(x - 4)
x² + 5x + 6 = x² + 2x + 3x + 2*3 = x(x+2) + 3(x+2) = (x + 2)(x + 3)
x² - 2x - 8 = x² + 2x - 4x - 2*4 = x(x+2) - 4(x+2) = (x + 2)(x - 4)
x² + 5x + 4 = x² + x + 4x + 4*1 = x(x+1) + 4(x+1) = (x + 1)(x + 4)

\frac{ x^{2} -16}{ x^{2} +5x+6}* \frac{x^{2} -2x-8}{ x^{2} +5x+4}= \frac{(x+4)(x-4)}{(x+2)(x+3)} * \frac{(x+2)(x-4)}{(x+1)(x+4)}
Now, cancel out some factors:
\frac{(x+4)(x-4)}{(x+2)(x+3)} * \frac{(x+2)(x-4)}{(x+1)(x+4)}= \frac{(x-4)(x-4)}{(x+3)(x+1)}=  \frac{ x^{2}-4x-4x+16}{ x^{2} +x+3x+3} = \frac{ x^{2} -8x+16}{ x^{2} +4x+3}


Q2. The answer is \frac{7(a-7)}{(a-8)(a+8)}
Since a² - b² = (a-b)(a+b), then a²- 64 = a² - 8² = (a-8)(a+8).
\frac{7}{a+8} +  \frac{7}{ a^{2} -64} = \frac{7}{a+8} +  \frac{7}{ (a+8)(a-8)}= \frac{7(a-8)}{(a+8)(a-8)} +  \frac{7}{ (a+8)(a-8)}= \frac{7(a-8)+7}{ (a+8)(a-8)}
= \frac{7(a-8)+7*1}{(a+8)(a-8)} =\frac{7(a-8+1)}{(a+8)(a-8)} =\frac{7(a-7)}{(a+8)(a-8)}


Q3. The answer is \frac{7(3a-4)}{(a-6)(a+8)}
\frac{ a^{2} -2a-3}{ a^{2}-9a+18 }-  \frac{a^{2} -5a-6}{ a^{2}+9a+8 }  = \frac{a^{2}+a-3a-3*1}{a^{2}-3a-6a+3*6} - \frac{a^{2}-a-6a-6*1}{a^{2}+a+8a+8*1}
= \frac{a(a+1)-3(a+1)}{a(a-3)-6(a-3)}- \frac{a(a+1)-6(a+1)}{a(a+1)+8(a+1)}= \frac{(a+1)(a-3)}{(a-6)(a-3)} - \frac{(a+1)(a-6)}{(a+1)(a+8)}
Now, cancel out some factors:
\frac{(a+1)(a-3)}{(a-6)(a-3)} - \frac{(a+1)(a-6)}{(a+1)(a+8)}= \frac{a+1}{a-6} - \frac{a-6}{a+8}
\frac{a+1}{a-6} - \frac{a-6}{a+8}= \frac{(a+1)(a+8)}{(a-6)(a+8)} -\frac{(a-6)(a-6)}{(a-6)(a+8)} =\frac{(a+1)(a+8)-(a-6)(a-6)}{(a-6)(a+8)}
= \frac{ a^{2} +9a+8- a^{2} +12-36}{(a-6)(a+8)} =\frac{9a+8+12-36}{(a-6)(a+8)} =\frac{21a-28}{(a-6)(a+8)} =\frac{7(3a-4)}{(a-6)(a+8)}


Q4. The answer is \frac{4x}{(x+3)(1+3x)}=\frac{4x}{ x^{2} +10x+3}
\frac{4}{x+3} / (\frac{1}{x}+3 )=\frac{4}{x+3} / (\frac{1}{x}+ \frac{3x}{x})=\frac{4}{x+3} / (\frac{1+3x}{x})= \frac{4}{x+3} * \frac{x}{1+3x} = \frac{4x}{(x+3)(1+3x)}
\frac{4x}{(x+3)(1+3x)}= \frac{4x}{x+3 x^{2} +3+9x}= \frac{4x}{ x^{2} +10x+3}


Q5. The answer is x = 6
\frac{-2}{x} +4= \frac{4}{x} +3
4-3= \frac{4}{x}- \frac{-2}{x}
1 = \frac{4-(-2)}{x}
1= \frac{4+2}{x}
1= \frac{6}{x}
x = 6
Let's check the solution:
Since: \frac{-2}{x} +4= \frac{4}{x} +3
Then: \frac{-2}{6}+4 = \frac{4}{6} +3
           - \frac{1}{3}+ \frac{4*3}{3}= \frac{2}{3} + \frac{3*3}{3}
           - \frac{1}{3} + \frac{12}{3} =  \frac{2}{3} + \frac{9}{3}
           \frac{-1+12}{3} = \frac{2+9}{3}
           \frac{11}{3} = \frac{11}{3}
Thus, the solution is correct
6 0
3 years ago
Other questions:
  • A polynomial of degree zero is a constant term.<br><br> A. True<br> B. False
    11·1 answer
  • HELP PLEASE!!!! A small tree was planted at a height of 8 feet. The tree has been planted for 14 months, and is now 52.8 feet ta
    5·1 answer
  • The perimeter of the rectangular shaped building is 960 feet. The shortest side of the building is 150 feet. What is the length
    13·1 answer
  • A composite solid consists of a cube with edges of length 6cm and a square pyramid with base edges of length 6cm and height of 6
    5·1 answer
  • Two times the greater of two consecutive integers is 9 less than three times the lesser integer. What are the integers?
    7·1 answer
  • Estimate the circumference of a circle that has a radius of 11 m.
    11·1 answer
  • 3. Write the standard equation of the circle with the given center that passes through the given
    5·1 answer
  • Classify the following triangle as right, acute or obtuse using the following side measurements: 20cm, 12cm, 16cm
    6·1 answer
  • Assume that each circle shown below represents one unit. Express the shaded amount as a single fraction and as a mixed number.
    11·1 answer
  • Solve for x.<br><br><br>−4/5x+3/10&lt;8/10
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!