Step-by-step explanation:
the opposite angles are always same.
Answer:
m=2
Step-by-step explanation:
I calculated it sorry
Answer:
Newton's second law of motion pertains to the behavior of objects for which all existing forces are not balanced. The second law states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object. The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Step-by-step explanation:
I believe A is wrong, but I´m unsure.
Answer:
m=3/4
Step-by-step explanation:
9514 1404 393
Answer:
- (c1, c2, c3) = (-2t, 4t, t) . . . . for any value of t
- NOT linearly independent
Step-by-step explanation:
We want ...
c1·f1(x) +c2·f2(x) +c3·f3(x) = g(x) ≡ 0
Substituting for the fn function values, we have ...
c1·x +c2·x² +c3·(2x -4x²) ≡ 0
This resolves to two equations:
x(c1 +2c3) = 0
x²(c2 -4c3) = 0
These have an infinite set of solutions:
c1 = -2c3
c2 = 4c3
Then for any parameter t, including the "trivial" t=0, ...
(c1, c2, c3) = (-2t, 4t, t)
__
f1, f2, f3 are NOT linearly independent. (If they were, there would be only one solution making g(x) ≡ 0.)