Answer:
Part A:
-Minimum: 10
-Q1: 17.5
-Median: 30
-Q3: 42.5
-Maximum: 50
Step-by-step explanation:
Part B: IQR= 25
This shows that the data varies for 25 different numbers. That HALF of the data is between 25 numbers.
Part C: Using a box-and-whisker plot you can interpret the different values. Minimum is the first dot (10), connected to the first line (Q1 which is 17.5), connected by a box to the median (30), connected by a box to the third line (Q3 which is 42.5), connected to the last dot which is the maximum (50). And IQR is Q3-Q1, so 42.5-17.5 which is 25.
The car's speed in feets per second is 79.2, Hence, it will cover a distance of 158.4 feets in 2 seconds.
Car's speed in miles per hour = 54 miles per hour
Recall :
- 1 mile = 5280 feets
- 1 hour = 3600 seconds
Car's rate in feet per second
- 54 miles per hour = (54 × 5280 × 1/3600) feet per second = 79.2 feets per second.
- Distance in 2 seconds :
- Distance = speed × time
- Distance = 79.2 × 2 = 158.4 feets
Therefore, the car will cover a distance of 158.4 feets in 2 seconds.
Learn more :brainly.com/question/23774048
So... hmm bear in mind, when the boat goes upstream, it goes against the stream, so, if the boat has speed rate of say "b", and the stream has a rate of "r", then the speed going up is b - r, the boat's rate minus the streams, because the stream is subtracting speed as it goes up
going downstream is a bit different, the stream speed is "added" to boat's
so the boat is really going faster, is going b + r
notice, the distance is the same, upstream as well as downstream
thus
![\bf \begin{cases} b=\textit{rate of the boat}\\ r=\textit{rate of the river} \end{cases}\qquad thus \\\\\\ \begin{array}{lccclll} &distance&rate&time(hrs)\\ &----&----&----\\ upstream&48&b-r&4\\ downstream&48&b+4&3 \end{array} \\\\\\ \begin{cases} 48=(b-r)(4)\to 48=4b-4r\\\\ \frac{48-4b}{-4}=r\\ --------------\\ 48=(b+r)(3)\\ -----------------------------\\\\ thus\\\\ 48=\left[ b+\left(\boxed{\frac{48-4b}{-4}}\right) \right] (3) \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0Ab%3D%5Ctextit%7Brate%20of%20the%20boat%7D%5C%5C%0Ar%3D%5Ctextit%7Brate%20of%20the%20river%7D%0A%5Cend%7Bcases%7D%5Cqquad%20thus%0A%5C%5C%5C%5C%5C%5C%0A%0A%5Cbegin%7Barray%7D%7Blccclll%7D%0A%26distance%26rate%26time%28hrs%29%5C%5C%0A%26----%26----%26----%5C%5C%0Aupstream%2648%26b-r%264%5C%5C%0Adownstream%2648%26b%2B4%263%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0A%0A%5Cbegin%7Bcases%7D%0A48%3D%28b-r%29%284%29%5Cto%2048%3D4b-4r%5C%5C%5C%5C%0A%5Cfrac%7B48-4b%7D%7B-4%7D%3Dr%5C%5C%0A--------------%5C%5C%0A48%3D%28b%2Br%29%283%29%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Athus%5C%5C%5C%5C%0A48%3D%5Cleft%5B%20b%2B%5Cleft%28%5Cboxed%7B%5Cfrac%7B48-4b%7D%7B-4%7D%7D%5Cright%29%20%5Cright%5D%20%283%29%0A%5Cend%7Bcases%7D)
solve for "r", to see what the stream's rate is
what about the boat's? well, just plug the value for "r" on either equation and solve for "b"

Length of the base = 16 km.
Length of the hypotenuse = 34 km. 
✎ The length of the missing leg ''
".

The length of the missing leg "a" is
.

Using Pythagoras theorem, we have




Hence verified. ✔
