There are two particular cases, the first is when Object A is attracted to the neutral wall. This would indicate that the object is not neutral, as there is an attraction.
At the same time we know that Object A is attracted to an object B. And therefore, the load of A must be opposite to that of B. Remember that opposite charges attract each other. If the charge of object B is positive, then the charge of object A will be negative.
Option B is correct: It has a negative charge.
The heat remains constant because there’s nothing to cool it down
Answer:
I think he would be dead poggers
Explanation:
A) 
The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):
(1)
where k is the spring constant.
The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:
(2)
where x is the displacement, m the mass, and v the speed.
We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

Using (2) we can rewrite this as

And using (1), we find

Substituting
into the last equation, we find the value of x:

B) 
In this case, the kinetic energy is 1/10 of the total energy:

Since we have

we can write

And so we find:

Answer:
The direction of the magnetic force on a moving charge is perpendicular to the plane formed by v and B and follows right hand rule–1 (RHR-1)
Explanation:
hope this helps