Answer:
v = 7.18_m/s
Explanation:
Velocity of the earth towards the ball is = velocity of the ball moving towards earth
For object in free fall, we have
Where
v = final velocity
u = initial velocity
g = acceleration due to gravity
t = time
S = height of ball above ground
v^2 = u^2 - 2×g×(-S)
= 0 + 2×9.8×2.63 = 51.55_m^2/s^2
Velocity of the ball just before it hits the ground is
v = 7.18_m/s
Answer:
Explanation:
Force is defined as the push or pull which changes or tries to change the position, state of motion and the shape of the object.
(A) The examples of push are:
To push a chair on the floor, to push the car when it is stopped due to some problem, to push book on the table.
The examples of pull are :
To pull a chair towards you, to pull a string in a game of top, to pull the string in a gym.
(B) To push a chair or a book, the force required is small as compared to the to push a car.
To pull a chair or the string of top is less than the force to pull the string in gym.
Answer:
3.08m/s²
Explanation:
Given parameters:
Radius = 20m
Tangential velocity = 7.85m/s
Unknown:
Centripetal acceleration = ?
Solution:
Centripetal acceleration is the acceleration of a body along a circular path.
it is mathematically given as;
a =
v is the tangential velocity
r is the radius
a = = 3.08m/s²
Answer:
The bicyclist's acceleration is 2.2m/s^2
Explanation:
Given
---- Initial Velocity
---- Final Velocity
---- Time
Required
Determine the acceleration
This will be solved using the first equation of motion
Substitute values for v, u and a
Collect Like Terms
Solve for a
---- (approximated)
<em>Hence, the bicyclist's acceleration is 2.2m/s^2</em>
They are a variable that changes as a result of the changes in the manipulated variable