Answer:
![[\psi]= [Length^{-3/2}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%3D%20%5BLength%5E%7B-3%2F2%7D%5D)
- This means that the integral of the square modulus over the space is dimensionless.
Explanation:
We know that the square modulus of the wavefunction integrated over a volume gives us the probability of finding the particle in that volume. So the result of the integral

must be dimensionless, as represents a probability.
As the differentials has units of length
for the integral to be dimensionless, the units of the square modulus of the wavefunction has to be:
![[\psi]^2 = [Length^{-3}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%5E2%20%3D%20%5BLength%5E%7B-3%7D%5D)
taking the square root this gives us :
![[\psi] = [Length^{-3/2}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%20%3D%20%5BLength%5E%7B-3%2F2%7D%5D)
Answer:
588 J
Explanation:
PE (potential energy) = (mass) x (gravity) x (height)
mass = 12 kg
gravity = 9.8m/s^2
height = 5 m
PE = (12) x (9.8) x (5) = 588 J (Joules)
Direct variation involves ration and proportions, so
you need to set up the proportion:
<span>11 / 75 = x / 65
Cross multiplying:
75x = 11*65
x = (11*65)/75
Solving, we get x = 9.533, </span>
<span>which rounds off to 9.5
Therefore, the spring will stretch up to 9.5 inches with 65 attached.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
The best and most correct answer among the choices provided by the question is <span>f(t) = −70 cos pi over 6t + 110</span><span>.
</span>
Hope my answer would be a great help for you.
If you have more questions feel free to ask here at Brainl
Answer:
Both have the same amount. C.
Explanation: