Answer:
Ion-dipole forces
Explanation:
Na⁺ is a cation, that is, an ion with a positive charge.
NH₃ has polar covalent bonds (due to the difference in electronegativity between nitrogen and hydrogen). According to the VESPR theory, it has a trigonal pyramidal shape with a lone pair. As a consequence, it has a net dipole moment and the molecule is polar.
The intermolecular forces between Na⁺ (ion) and NH₃ (dipole) are ion-dipole forces.
the god ran down the street
First, lets balance the reaction equation:
4Fe + 3O₂ → 2Fe₂O₃
It is visible form the equation that 4 moles of Fe require 3 moles of O₂
Molar ratio Fe/O₂ = 4/3 = 1.33
Molar ratio O₂/Fe = 3/4 = 0.75
Now, we check the molar ratios present:
Fe/O₂ = 6.8/8.9 = 0.76
O₂/Fe = 1.31
Thus, Iron is the limiting reactant because its ratio is not being fulfilled while the ratio of O₂ is surpassed.
Answer:
So A covalent bond consists of the mutual sharing of one or more pairs of electrons between two atoms. These electrons are simultaneously attracted by the two atomic nuclei. A covalent bond forms when the difference between the electronegativities of two atoms is too small for an electron transfer to occur to form ions.
Explanation:
words to know: covalent bond, electronegativities, and simultaneously
Covalent Bond: A chemical bond formed when electrons are shared between two atoms. Usually each atom contributes one electron to form a pair of electrons that are shared by both atoms.
Electronegativities: the degree to which an element tends to gain electrons and form negative ions in chemical reactions.
Simultaneously: at the same time.
hope this helps!
Answer:
Akash
Explanation:
it could be a magnet with the same poles facing eachoher