Answer:
Suzi
Step-by-step explanation:
7/10>3/5
3/5=6/10
7/10>6/10
6kg cost 27
1kg cost 4.5
13kg X 4.5= 58.5
Answer:
9 hours
Step-by-step explanation:
According to Newton's laws of cooling
dT/dt = -k(T - A)
Let U = T - A
dU/dT = 1
dU = dT
dt/dt = -kU
dT = -kU(dt)
dU/U = -kdt
On integration
ln(U) = -kt + C
U = Ce^-kt
T - A = Ce^-kt
T(0) = 68
T(5) = 25
68 - 20 = Ce^-k(0)
C = 48
and
25 -20 = 48e^-k(5)
5 = 48e^-5k
e^-5k = 5/48
-5k = ln (5/48)
k = - ln(5/48) / 5
k = - 0.4524
T - 20 = 48e^-0.4524t
When T = 21
21 -20 = 48e^-0.4524t
1 = 48e^-0..4524t
e^-0.4524t = 1/48
-0.4524t = ln (1/48)
t = - ln(1/48) / 0.4524
t = 8.5570
t= 9 hours ( to the nearest hour)
Answer:
Step-by-step explanation:
a. The probability of selecting a 6 from the first draw and a 7 on the second draw when two balls are selected without replacement from a container with 10 balls numbered 1 to 10
Not independent because without replacement
Prob for both = 
b. The probability of selecting a 6 on the first draw and a 7 on the second draw when two balls are selected with replacement from a container with 10 balls numbered 1 to 10
Here independent because with replacement makes probability independent.
Prob for both = P(A) *P(B) =
d
c. The probability that two people selected at random in a shopping mall on a very busy Saturday both have a birthday in the month of June. Assume that all 365 birthdays are equally
likely, and ignore the possibility of a February 29 leap-year birthday.
Here independent because one person birthday will not affect the other person birthday
Prob for both = 
d. The probability that two socks selected at random from a drawer containing 10 black socks and 6 white socks will both be black
Prob for I sock black = 10/16 and II sock black if first sock is black = 9/15
Hence not independent
Prob for both = 
Answer:
<em>Point </em><em>B </em><em>represents </em><em>the </em><em>location </em><em>of </em>
<em>
</em>
Step-by-step explanation:
<em>As </em><em>the </em><em>value </em><em>of </em><em>under </em><em>root </em><em>1</em><em>6</em><em> </em><em>is </em><em>4</em><em> </em><em>and </em><em>the </em><em>value </em><em>of </em><em>under </em><em>root </em><em>2</em><em>5</em><em> </em><em>is </em><em>5</em><em> </em>
<em>So </em><em>the </em><em>location </em><em>of </em><em>under </em><em>root </em><em>2</em><em>0</em><em> </em><em>will </em><em>be </em><em>in </em><em>between </em><em>4</em><em> </em><em>an</em><em>d</em><em> </em><em>5</em><em> </em><em>on </em><em>the </em><em>number </em><em>line</em>
<em>.</em>
<em>.</em>
<em>.</em>
<em>Hope </em><em>it </em><em>helps</em>