Answer:
[Ar] 3d10 4s1
Explanation:
The correct electronic configuration of copper is [Ar] 3d10 4s1
Copper has atomic number 29 and due to the stability of half filled or fully filled orbitals or shells, the electrons from the 4s jumps to the 3d and makes the 3d shell contain 10 electrons.
This is what I mean:
Cu = Ar 4s2 3d10 is the expected configuration of copper when we follow the principle of filling the various orbitals that is the s, p, d, f orbitals.
But because we write 3d before writing 4s, we have Ar 3d10 4s2. Instead of this configuration becoming the correct one, an electron from the 4s orbital jumps to the 3d orbital to complete the orbital giving the electrons in the 3d orbital 10.
So therefore the correct configuration is Ar 3d10 4s1
The answer is 10 grams.
The atomic weights for each elements are :
<span>Na - 22.99 g/mol </span>
<span>O - 16.00 g/mol </span>
<span>H - 1.01 g/mol
The sum = 40 g/mol for NAOH
</span><span>0.250 moles * 40.00 g / 1 mole = 10 g NaOH</span>
Atomic Number-6
Mass Number-14
Explanation and answer:
The molar volume of a gas is 22.4 L at 0 deg. C.
So the molar mass of the gas is, by proportion,
0.16 g * (22400 mL)/(240 mL) = 14.93 g
The molar mass of (CH4)n = 12+4(1) = 16.
So n = 15.93/16 = 1, or the molecular formula is CH4.
Note: The temperature at which the volume was observed was not given. If 240 cm^3 was observed at 20 deg.C, then the volume at 0 deg.C would be
V=240*(273+0)/(273+20) = 223.6
The molar mass = 0.16*22400/(223.6) = 16.03
which gives n = 16/16.03 = 1 again, but more accurately.
At first quarter and last quarter, the Moon lies perpendicular to a line between Earth and the Sun. We see exactly half of the Moon illuminated by the Sun — the other half lies in shadow. Hope it helps :)