<span>The esters need to evaporate to be smelled.</span>
Answer:
Molar mass = 32.64 g / mol.
The density of gas is 1.3 × 10⁻³g/mL.
Explanation:
Given data:
Mass of sample = 2.35 g
Pressure = 1.05 atm
Volume = 1.85 L (1.85 × 1000 = 1850 ml)
Temperature = 55 °C (55+ 273.15 = 328.15 K)
Density = ?
Formula:
d = m/ v
The volume of flask would be the volume of gas.
d = 2.35 g / 1850 mL = 0.0013 g/mL or 1.3 × 10⁻³g/mL
The density of gas is 1.3 × 10⁻³g/mL.
Molar mass:
Now we will calculate the moles of a gas first in order to find the molar mass of a gas.
Formula:
PV =nRT
n = number of moles.
n = PV / RT
n = 1.05 atm × 1.85 L / 0.0821 atm. dm³. K⁻¹ . mol⁻¹ × 328.15 K
n = 1.9425 atm . L / 26.941115 atm . dm.³mol⁻¹
n = 0.072 mol
Now we will find the molar mass.
Number of moles = mass / molar mass
0.072 mol = 2.35 g / molar mass
Molar mass = 2.35 g / 0.072 mol
Molar mass = 32.64 g / mol
Thermoplastics and thermosetting polymers Examples include: polyethylene (PS) and polyvinyl choline (PVC). Common thermoplastics range from 20,000 to 50,000 amu, while thermosets are assumed to have infinite molecular weight.
Answer:
Sl reproduction occurs when living organisms combine genetic information from two different types.
Explanation: