Answer:
FALSE
Explanation:
Assuming that the gas is ideal
Therefore the gas obeys the ideal gas equation
<h3>Ideal gas equation is </h3><h3>P × V = n × R × T</h3>
where
P is the pressure exerted by the gas
V is the volume occupied by the gas
n is the number of moles of the gas
R is the ideal gas constant
T is the temperature of the gas
Here volume of the gas will be the volume of the container
Given the volume of the container and number of moles of the gas are constant
As R will also be constant, the pressure of the gas will be directly proportional to the temperature of the gas
P ∝ T
∴ Pressure will be directly proportional to the temperature
Answer:
When you place the north pole of one magnet near the south pole of another magnet, they are attracted to one another.
Explanation:
Answer:
3CaBr2 + 2LI3PO4 - > Ca3(PO4) 2 + 6LiBr
Explanation:
The first one I did was PO4. There are two on the right side, so I added 2 to Li3PO4 on the other side. That balanced the PO4s and then gave me 6 Lithiums so I balanced that one next on the right side. I added 6 to LiBr which balanced the Li but then gave me 6 Br, so I finished it off by adding 3 in front of CaBr2 which balanced the calcium and bromines.
Here was the process:
CaBr2+2Li3PO4 -> Ca3(PO4)2+LiBr
Balances PO4 (2on both sides)
CaBr2+2Li3PO4 -> Ca3(PO4)2+6LiBr
Balances Lithiums (6 on each side)
3CaBr2+2Li3PO4 -> Ca3(PO4)2+6LiBr
Balances Calciums and Bromines (3 Calciums and 6 Bromines each side)
Hope this helped!
Jayne's science teacher mixed a clear liquid with a blue liquid in a beaker. After a few minutes there was a white solid at the bottom of the beaker.So,<span>It is a new substance with different properties.</span>