Answer:
<u>first step </u>
NO2(g) ------------------------------------> NO(g) + O(g)
<u>second step</u>
NO2(g) + O(g) -----------------------------> NO(g) + O2(g)
Explanation:
<u>first step </u>
NO2(g) ------------------------------------> NO(g) + O(g)
<u>second step</u>
NO2(g) + O(g) -----------------------------> NO(g) + O2(g)
Answer:
D) B and D. Weak tides, called neap tides, are experienced in the Earth's oceans when the sun is in positions B or D. In this case, the sun and moon interfere with each other in producing tidal bulges on Earth. It is definitely not the other answer since I got it right on USATESTPREP.
Answer: The answer is A. A conductor that allows electricity to flow easily
Explanation:
For an isothermal process equation will be as follows.
W = nRT ln
It is given that mass is 10 kg/s or 10,000 g/s (as 1 kg = 1000 g). So, calculate number of moles of water as follows.
No. of moles =
=
= 555.55 mol/s
= 556 mol/s (approx)
As T =
or (50 + 273.15) K = 323.15 K. Hence, putting the given values into the above formula as follows.
W = nRT ln[/tex]\frac{P_{1}}{P_{2}}[/tex]
=
=
= -3440193.809 J/s
Negative sign shows work is done by the pump. Since, 1 J = 0.001 kJ. Therefore, converting the calculated value into kJ as follows.

= 3440.193 kJ/s
= 3451 kJ/s (approx)
Thus, we can conclude that the pump work is 3451 kJ/s.
Answer:
96%
Explanation:
Step 1: Write the balanced neutralization reaction
Al(OH)₃ + 3 HCl ⇒ AlCl₃ + 3 H₂O
Step 2: Calculate the theoretical yield of AlCl₃
According to the balanced equation, the mass ratio of Al(OH)₃ to AlCl₃ is 81.03:133.34.
28 g Al(OH)₃ × 133.34 g AlCl₃/81.03 g Al(OH)₃ = 46 g AlCl₃
Step 3: Calculate the percent yield of AlCl₃
The real yield of AlCl₃ is 44 g. We can calculate the percent yield using the following expression.
%yield = real yield / theoretical yield × 100%
%yield = 44 g / 46 g × 100% = 96%