<span>1.40 x 10^5 kilograms of calcium oxide
The reaction looks like
SO2 + CaO => CaSO3
First, determine the mass of sulfur in the coal
5.00 x 10^6 * 1.60 x 10^-2 = 8.00 x 10^4
Now lookup the atomic weights of Sulfur, Calcium, and Oxygen.
Sulfur = 32.065
Calcium = 40.078
Oxygen = 15.999
Calculate the molar mass of CaO
CaO = 40.078 + 15.999 = 56.077
Since 1 atom of sulfur makes 1 atom of sulfur dioxide, we don't need the molar mass of sulfur dioxide. We merely need the number of moles of sulfur we're burning. divide the mass of sulfur by the atomic weight.
8.00 x 10^4 / 32.065 = 2.49 x 10^3 moles
Since 1 molecule of sulfur dioxide is reacted with 1 molecule of calcium oxide, just multiply the number of moles needed by the molar mass
2.49 x 10^3 * 56.077 = 1.40 x 10^5
So you need to use 1.40 x 10^5 kilograms of calcium oxide per day to treat the sulfur dioxide generated by burning 5.00 x 10^6 kilograms of coal with 1.60% sulfur.</span>
Answer: 16 atm
Explanation:
P1V1 = P2V2
P2 = P1V1/V2
=4 atm x 8.00 L/2.00L = 16 atm
Explanation:
Because molarity is mol/L, we'll have to convert 17g to mol.
After obtaining the mol, we'll divide that by the volume to obtain Molarity.
1. Complete ionization in water.
2. Ionization constant.
3. A good hydrogen-ion acceptor.
4. Weak acid.
5. This base ionizes slightly in aqueous.
I really hope this answer helps you out! It makes my day helping people like you and giving back to the community that has helped me through school! If you could do me a favor, if this helped you and this is the very best answer and you understand that all of my answers are legit and top notch. Please mark as brainliest! Thanks and have a awesome day!
Volume ⇒ 50 mL in liters : 50 / 1000 = 0.05 L
Molarity of solution ⇒ 0.15 M
Number of moles:
n = M * V
n = 0.15 * 0.05
n = 0.0075 moles of CuCl2
hope this helps!.