Answer:
The average atomic mass is closer to Si- 28 because this isotope is present in more percentage in the sample.
Explanation:
Given data:
Atomic mass of silicon= ?
Percent abundance of Si-28 = 92.21%
Atomic mass of Si-28 = 27.98 amu
Percent abundance of Si-29 = 4.70%
Atomic mass of Si-29 = 28.98 amu
Percent abundance of Si-30 = 3.09%
Atomic mass of Si-30 = 29.97 amu
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass)+(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (92.21×27.98)+(4.70×28.98)+(3.09×29.97) /100
Average atomic mass = 2580.04 +136.21+92.61 / 100
Average atomic mass = 2808.86 / 100
Average atomic mass = 28.08amu.
The average atomic mass is closer to Si- 28 because this isotope is present in more percentage in the sample.
Answer:
ΔH = -20kJ
Explanation:
The enthalpy of formation of a compound is defined as the change of enthalpy during the formation of 1 mole of the substance from its constituent elements. For H₂S(g) the reaction that describes this process is:
H₂(g) + S(g) → H₂S(g)
Using Hess's law, it is possible to sum the enthalpies of several reactions to obtain the change in enthalpy of a particular reaction thus:
<em>(1) </em>H₂S(g) + ³/₂O₂(g) → SO₂(g) + H₂O(g) ΔH = -519 kJ
<em>(2) </em>H₂(g) + ¹/₂O₂(g) → H₂O(g) ΔH = -242 kJ
<em>(3) </em>S(g) + O₂(g) → SO₂(g) ΔH = -297 kJ
The sum of -(1) + (2) + (3) gives:
<em>-(1) </em>SO₂(g) + H₂O(g) → H₂S(g) + ³/₂O₂(g) ΔH = +519 kJ
<em>(2) </em>H₂(g) + ¹/₂O₂(g) → H₂O(g) ΔH = -242 kJ
<em>(3) </em>S(g) + O₂(g) → SO₂(g) ΔH = -297 kJ
<em>-(1) + (2) + (3): </em><em>H₂(g) + S(g) → H₂S(g) </em>
<em>ΔH =</em> +519kJ - 242kJ - 297kJ = <em>-20 kJ</em>
<em />
I hope it helps!
Answer:
In first shell 2 electrons are present and 7 electrons are present in last shell
Explanation: