1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ella [17]
3 years ago
7

ماهي قوة التركيز من العين عندما ينضر الكاءن من ٢٠ الى ٥٠٠ من عينه

Physics
1 answer:
Debora [2.8K]3 years ago
4 0

Answer:

What is the power of focus from the eye when a subject looks from 20 to 500 from its eye?

Explanation:

Is that your question?

You might be interested in
Homework help plz it would help a lot ​
blagie [28]

#82

here we know that

acceleration = 2 m/s/s

time = 5 s

initial speed = 4 m/s

now we can use kinematics to find the final speed

v_f = v_i + at

v_f = 4 + 2(5)

v_f = 14 m/s

So correct answer will be option D)

#83

here we know that

acceleration = 3 m/s/s

time = 4 s

initial speed = 5 m/s

now we can use kinematics to find the final speed

v_f = v_i + at

v_f = 5 + 3(4)

v_f = 17 m/s

So correct answer will be option C)

#84

here we know that

acceleration = 7 m/s/s

time = 3 s

initial speed = 8 m/s

now we can use kinematics to find the final speed

v_f = v_i + at

v_f = 8 + 7(3)

v_f = 29 m/s

So correct answer will be option C)

6 0
3 years ago
Experiments show that the pressure drop for flow through an orifice plate of diameter d mounted in a length of pipe of diameter
Klio2033 [76]

The question is not clear and the complete question says;

Experiments show that the pressure drop for flow through an orifice plate of diameter d mounted in a length of pipe of diameter D may be expressed as Δp = p1 − p2 =f (ρ, μ, V, d, D). You are asked to organize some experimental data. Obtain the resulting dimensionless parameters.

Answer:

The set of dimensionless parameters is; (Δp•d)/Vµ = Φ((D/d), (ρ•d•V/µ))

Explanation:

First of all, let's write the functional equation that lists all the variables in the question ;

Δp = f(d, D, V, ρ, µ)

Now, since the question said we should express as a suitable set of dimensionless parameters, thus, let's write all these terms using the FLT (Force Length Time) system of units expression.

Thus;

Δp = Force/Area = F/L²

d = Diameter = L

D = Diameter = L

V = Velocity = L/T

ρ = Density = kg/m³ = (F/LT^(-2)) ÷ L³ = FT²/L⁴

µ = viscosity = N.s/m² = FT/L²

From the above, we see that all three basic dimensions F,L & T are required to define the six variables.

Thus, from the Buckingham pi theorem, k - r = 6 - 3 = 3.

Thus, 3 pi terms will be needed.

Let's now try to select 3 repeating variables.

From the derivations we got, it's clear that d, D, V and µ are dimensionally independent since each one contains a basic dimension not included in the others. But in this case, let's pick 3 and I'll pick d, V and µ as the 3 repeating variables.

Thus:

π1 = Δp•d^(a)•V^(b)•µ^(c)

Now, let's put their respective units in FLT system

π1 = F/L²•L^(a)•(L/T)^(b)•(FT/L²)^(c)

For π1 to be dimensionless,

π1 = F^(0)•L^(0)•T^(0)

Thus;

F/L²•L^(a)•(L/T)^(b)•(FT/L²)^(c) = F^(0)•L^(0)•T^(0)

By inspection,

For F,

1 + c = 0 and c= - 1

For L; -2 + a + b - 2c = 0

For T; -b + c = 0 and since c=-1

-b - 1 = 0 ; b= -1

For L, -2 + a - 1 - 2(-1) = 0 ; a=1

So,a = 1 ; b = -1; c = -1

Thus, plugging in these values, we have;

π1 = Δp•d^(1)•V^(-1)•µ^(-1)

π1 = (Δp•d)/Vµ

Let's now repeat the procedure for the second non-repeating variable D2.

π2 = D•d^(a)•V^(b)•µ^(c)

Now, let's put their respective units in FLT system

π1 = L•L^(a)•(L/T)^(b)•(FT/L²)^(c)

For π2 to be dimensionless,

π2 = F^(0)•L^(0)•T^(0)

Thus;

L•L^(a)•(L/T)^(b)•(FT/L²)^(c) = F^(0)•L^(0)•T^(0)

By inspection,

For F;

-2c = 0 and so, c=0

For L;

1 + a + b - 2c = 0

For T;

-b + c = 0

Since c =0 then b =0

For, L;

1 + a + 0 - 0 = 0 so, a = -1

Thus, plugging in these values, we have;

π2 = D•d^(-1)•V^(0)•µ^(0)

π2 = D/d

Let's now repeat the procedure for the third non-repeating variable ρ.

π3 = ρ•d^(a)•V^(b)•µ^(c)

Now, let's put their respective units in FLT system

π3 = F/T²L⁴•L^(a)•(L/T)^(b)•(FT/L²)^(c)

For π4 to be dimensionless,

π3 = F^(0)•L^(0)•T^(0)

Thus;

FT²/L⁴•L^(a)•(L/T)^(b)•(FT/L²)^(c) = F^(0)•L^(0)•T^(0)

By inspection,

For F;

1 + c = 0 and so, c=-1

For L;

-4 + a + b - 2c = 0

For T;

2 - b + c = 0

Since c =-1 then b = 1

For, L;

-4 + a + 1 +2 = 0 ;so, a = 1

Thus, plugging in these values, we have;

π3 = ρ•d^(1)•V^(1)•µ^(-1)

π3 = ρ•d•V/µ

Now, let's express the results of the dimensionless analysis in the form of;

π1 = Φ(π2, π3)

Thus;

(Δp•d)/Vµ = Φ((D/d), (ρ•d•V/µ))

3 0
3 years ago
A+10 u charge and a -10 4C (1 HC - 106 C), at a distance of 0.3 m,
Marina CMI [18]

Answer:

B. Attract each other with a force of 10 newtons.

Explanation:

Statement is incorrectly written. <em>The correct form is: A </em>+10\,\mu C<em> charge and a </em>-10\,\mu C<em> at a distance of 0.3 meters. </em>

The two particles have charges opposite to each other, so they attract each other due to electrostatic force, described by Coulomb's Law, whose formula is described below:

F = \frac{\kappa \cdot |q_{A}|\cdot |q_{B}|}{r^{2}} (1)

Where:

F - Electrostatic force, in newtons.

\kappa - Electrostatic constant, in newton-square meters per square coulomb.

|q_{A}|,|q_{B}| - Magnitudes of electric charges, in coulombs.

r - Distance between charges, in meters.

If we know that \kappa  = 8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}}, |q_{A}| = |q_{B}| = 10\times 10^{-6}\,C and r = 0.3\,m, then the magnitude of the electrostatic force is:

F = \frac{\kappa \cdot |q_{A}|\cdot |q_{B}|}{r^{2}}

F = 9.987\,N

In consequence, correct answer is B.

4 0
3 years ago
Which is true?A)The spin angular momentum vector itself can be measured, and it can be aligned along the measurement axis (z axi
12345 [234]

Answer:

Option A is correct

Explanation:

Direction of spin can be measured because of the behaviours of the particle as it goes through a magnetic field and the size of the spin is dependant on type of particle.

3 0
3 years ago
A person is drinking a glass of soda with ice.
prisoha [69]

The relative kinetic energy of molecules in the soda is least energy and above the soda in the glass is greatest energy.

The relative kinetic energy of gas molecules increases with increase in the mean distance between the gas molecules.

Also, relative kinetic energy of gas molecules increases with in the temperature of the gas molecules and decreases with a decrease in the temperature of the of the gas molecules;

ΔK.E ∝ T

The ice in the soda lowers the temperature of the gas molecules, thereby reducing their average speed which in turn reduces the average kinetic energy of the gas molecules in the soda.

Above the soda in the glass, the concentration of the gas molecules is less and their mean distance is greatest when compared to inside the soda. This results to an increase in the speed of the gas molecules which increases their average kinetic energy.

Thus,  the relative kinetic energy of molecules in the soda is least energy and above the soda in the glass is greatest energy.

Learn more about temperature and kinetic energy here: brainly.com/question/305606

3 0
3 years ago
Other questions:
  • To increase the period of a mass-spring oscillator, increase the ___
    13·1 answer
  • 3. In which activity is no work done?
    15·1 answer
  •  Which of the following levels of classification is the least specific?
    9·1 answer
  • A proton moving along the x axis has an initial velocity of 4.0 × 106 m/s and a constant acceleration of 6.0 × 1012 m/s2. What i
    8·2 answers
  • A tool industry characterized by the appearance of hand axes, a bifacial type of blade.
    14·1 answer
  • A charged particle is known as a(n)
    6·1 answer
  • Direct current, DC, flows in a _________ direction while alternating current, AC, the direction of flow ___________. A) single,
    10·2 answers
  • What is capacitance?
    9·1 answer
  • A simple pendulum bhas a period of 3.45s when the length of the pendulum is shortened by 1m the period is 2.81s caculate the ori
    13·1 answer
  • Ill give brainlist help pleaseee asap
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!