The term saturated solution is used in chemistry to define a solution in which no more solute can be dissolved in the solvent. It is understood that saturation of the solution has been achieved when any additional substance that is added results in a solid precipitate or is let off as a gas.
Answer:
100 miles North East.
Explanation:
Please see attached photo for diagram.
In the attached photo, X represents the magnitude of the total displacement of the train.
Thus, we can obtain the value of X by using the pythagoras theory as illustrated below:
X² = 80² + 60²
X² = 6400 + 3600
X² = 10000
Take the square root of both side
X = √10000
X = 100 miles.
Therefore, the magnitude of the total displacement of the train is 100 miles North East.
Answer:
Mike will receive an electric shock
Explanation:
Human body is a conductor of electricity. When lightning strikes rod and give it negative charge, the rod will dissipate its charge as soon as it comes in contact with earth via conduting material. Mike will receive a severe electric shock as negatice charge pass through his body to other rod and to the ground.His body will feel numb. He may also get unconscious.
Answer:
<em>The internal energy change is 330.01 J</em>
Explanation:
Given
the initial volume = 5.75 L
the final volume = 1.23 L
is the external pressure = 1.00 atm
q the heat energy removed = -128 J (since is removed from the system)
expansion against a constant external pressure is an example of an irreversible pathway, here pressure in is greater than pressure out and can be obtained thus;
W = -
ΔV
W = -1.00 x(1.23 - 5.75)
W = -1.00 x -4.52
W = 4.52 L atm
converting to joules we have
W = 4.52 L atm x 101.33 J/ L atm = 458.01 J
The internal energy change during compression can be calculated thus;
ΔU = q + W
ΔU = -128 J + 458.01 J
ΔU = 330.01 J
Therefore the internal energy change is 330.01 J
Answer:
392 N
Explanation:
Draw a free body diagram of the rod. There are four forces acting on the rod:
At the wall, you have horizontal and vertical reaction forces, Rx and Ry.
At the other end of the rod (point X), you have the weight of the sign pointing down, mg.
Also at point X, you have the tension in the wire, T, pulling at an angle θ from the -x axis.
Sum of the moments at the wall:
∑τ = Iα
(T sin θ) L − (mg) L = 0
T sin θ − mg = 0
T = mg / sin θ
Given m = 20 kg and θ = 30.0°:
T = (20 kg) (9.8 m/s²) / (sin 30.0°)
T = 392 N